Stereoselective Synthesis of the Pheromone (R)-(-)-Sulcatol, and Its Enantiopure (R)- and (S)-1-Mono-, -1,1-Di-, and -1,1,1-Trifluoro Analogues^[1]

Alberto Arnone, [a] Pierfrancesco Bravo, *[a] Walter Panzeri, [a] Fiorenza Viani, [a] and Matteo Zanda [b]

Keywords: Fluorine / Pheromones / Sulfoxides / Sulcatol / Asymmetric synthesis

The pheromone (*R*)-(-)-sulcatol (**10a**) and three of its enantiomeric mono-, di-, and trifluoro analogues **10b-d** have been synthesized, in six steps and with good overall yields,

starting from chiral (R)-2-methyl-5-[(4-methylphenyl)sulfinyl]pent-2-ene (1) and commercially available fluorinated or non-fluorinated acetates.

Fluorination of organic compounds has been shown to be particularly important in a number of fields, such as medicinal chemistry, bio- and agrochemistry, and material sciences. Fluorine alters considerably the physico-chemical properties of organic compounds, thus modifying the activity of biologically important molecules. [2] Fluoro-substituted molecules often have reduced melting points and are more volatile and hydrophobic: For these reasons, when considering the different classes of bioactive compounds, the preparation of fluoro-substituted insect hormones, sex pheromones and biosynthetic inhibitors is continually a subject of interest for insect pest control. [3] Population aggregation pheromones have been identified in several species of Scolytidae Coleoptera: [4] Sulcatol is the male-produced aggregation pheromone which was first isolated from the boring dust of Gnathotrichus Sulcatus, an economically important ambrosia beetle of the Pacific Coast of North America. [5] Gnathotrichus Sulcatus is a timber pest which responds to this aggregation pheromone in a peculiar way: It can distinguish between the two enantiomeric forms of the pheromone and gives a positive response only when both enantiomers are present, in a 65:35 mixture of the (S)-(+) and (R)-(-) enantiomers. Therefore, in this case, the two enantiomers act synergistically to elicit a response. [6] Interestingly, Gnathotrichus retusus, which is the second species to share the pheromone sulcatol, responds only to (S)-(+)-sulcatol, whilst the (R)-(-) enantiomer seems, to some extent, to inhibit the response. [7]

In this paper we wish to report on the preparation of some enantiomerically pure, fluoro-substituted sulcatol analogues and of (R)-(-)-sulcatol itself, $^{[8]}$ by chiral sulfoxide chemistry. $^{[9]}$

The straightforward synthetic plan shown in the Scheme 1 consists of three main steps: 1) the reaction of commer-

cially available ethyl acetate and ethyl monofluoro-, difluoro-, and trifluoroacetates \mathbf{E} , with the hexenyl p-tolyl sulfoxide $\mathbf{D}^{[10]}$ to provide the key β -oxo sulfoxides \mathbf{C} ; 2) reduction of the β -oxo function of \mathbf{C} to provide the β -hydroxy sulfoxides \mathbf{B} ; 3) reductive desulfinylation of \mathbf{B} , leading to the targeted sulcatol and 1-fluoro-substituted analogues \mathbf{A} .

Scheme 1. Retrosynthesis

Results and Discussion

Synthesis of β-Hydroxy Sulfoxide Derivatives 4

β-Oxo sulfoxides 3a-d (Scheme 2) were obtained as nearly equimolar mixtures of C-3 epimers by reaction of the enantiopure lithiated sulfoxide (R)-1, [10] with the corresponding acetic esters 2. [11] β-Oxo sulfoxide 3a and the monofluoro derivative 3b are stable compounds which can be purified by flash chromatography and stored for several days at 4°C, whereas the di- and trifluorinated derivatives 3c and 3d are quite unstable and had to be processed within a few hours without any intermediate purification.

Scheme 2. Reagents and conditions: i) LDA, THF, $-60\,^{\circ}\text{C}$

[[]a] C.N.R. – Centro di Studio sulle Sostanze Organiche Naturali,

via Mancinelli 7, I-20131 Milano, Italy
Dipartimento di Chimica del Politecnico,
via Mancinelli 7, I-20131 Milano, Italy
Fax: (internat.) + 39(0)2/2399-3080
E-mail: bravo@dept.chem.polimi.it

Supporting information for this article is available on the WWW under http://www.wiley-vch.de/home/eurjoc or from the author.

Reduction of the β -oxo sulfoxides 3a-d to the corresponding β-hydroxy derivatives **4a-d** was a key-step in the synthetic sequence, and therefore carefully investigated. [12] Four diastereomers can be produced in this reaction. Modest stereoselectivities at the C-3 centre have sometimes been achieved in the reduction of epimeric mixtures of α-substituted β-oxo sulfoxides by means of dynamic kinetic resolution with the system NaBH₄/NH₄OH/MeOH. [12q] However, in this case the stereocentres C-3 are destroyed in the steps that follow (Scheme 1), therefore this study was undertaken with the aim of obtaining high diastereoselectivity in the formation of the carbinolic stereocentres C-2 (Scheme 3, Table 1). First, we investigated the reduction of the fluorinefree derivative 3a. Following the modification of García Ruano [13] of the Solladié/Kosugi methodology, [12b,14] 3a was treated first with ZnBr2 (1.2 equiv.) for 2 h in THF at r.t., then with DIBAH at -60°C (Table 1, entry 1). Satisfactorily, the formation of the two C-3 epimers of 4a having (R) stereochemistry at the newly created carbinolic centre C-2 was overwhelmingly preferred (12.3:1.0) (84% isolated yield). In contrast, NaBH₄ (in the presence of NH₄OH) proceeded with low stereocontrol, delivering an almost equimolar mixture of epimers at C-2 (Table 1, entry 2) (80%).

Scheme 3. Reagents and conditions: i) see Table 1

Reduction of the monofluoro derivative **3b** with DIBAH/ZnBr₂ occurred with lower chelation-control, as already reported in the literature for other monofluorinated β -oxo sulfoxides. [12p,13] The best result was obtained with 5 equiv. of ZnBr₂ (Table 1, entry 3), which produced a 3.8:1.0 ratio

of (2R)/(2S) alcohols **4b** (90%). Slightly lower diastereoselectivity was achieved with 1.2 equiv. of $ZnBr_2$, namely (2R)/(2S) = 3.3:1.0 (Table 1, entry 4) (92%). Stereocontrol was modest in the absence of $ZnBr_2$, and treatment of the epimers **3b** with DIBAH at -78°C produced three diastereomers in comparable amounts (Table 1, entry 5) (95%).

Reduction of the epimeric difluoro β -oxo sulfoxides 3c could not be accomplished under chelation-control conditions, because the substrates underwent extended decomposition in the presence of $ZnBr_2$ at r.t.. Treatment of 3c with DIBAH (Table 1, entry 6) produced a mixture of the four corresponding alcohols, three of which could be obtained in a diastereomerically pure form by flash chromatography (95%).

Finally, attempts to reduce the trifluoro derivatives 3d with DIBAH proved to be unsuccessful. Therefore, reduction was performed by means of NaBH₄/NH₄OH, providing the four corresponding hydroxy derivatives 4d, with modest stereoselectivity (ca. 7:3) in favour of the (2R) diastereomers (Table 1, entry 7).

The high stereocontrol observed upon chelation conditions for the DIBAH reduction of the fluorine-free β -oxo sulfoxide 3a can be interpreted in terms of the model proposed by Solladié and García Ruano [9e,13] (Figure 1) in which a chair-like transition state, having DIBAH associated with the lone pair at the sulfur atom, undergoes axial attack by the hydride, independent of the C-3 configuration. However, fluoro substitution is expected to decrease the electron density on the carbonyl oxygen atom, thus making the coordination by ZnBr₂ less efficient, moreover fluorine atoms may compete in the chelation with the sulfinyl group. Therefore, monofluoro compound 3b can also be reduced by DIBAH under non-chelation conditions (Table 1, entry 5), providing lower stereocontrol, in line with other analogous examples reported in the literature, where the carbonyl oxygen atom could not be efficiently chelated [12p,13].

Figure 1. DIBAH reduction: chair-like transition state

Table 1. Reduction of β-oxo sulfoxides 3a-d

Entry	$R_F(R)$	Method	(2 <i>R</i> ,3 <i>S</i>)	Diastereomeric ra (2 <i>R</i> ,3 <i>R</i>)	tio of alcohols (4) (2 <i>S</i> ,3 <i>R</i>)) ^[a] (2 <i>S</i> ,3 <i>S</i>)
1	CH ₃	DIBAH/ZnBr ₂ (1.2 equiv.)	6.8	5.5	1.0	_
2	CH_3	NaBH ₄	7.2	1.0	_	6.7
3	CH_2F	DIBAĤ/ZnBr ₂ (5 equiv.)	3.2	1.0	1.1	_
4	$CH_2^{\tilde{z}}F$	DIBAH/ZnBr ₂ (1.2 equiv.)	3.0	1.0	1.2	_
5	$CH_2^{\tilde{z}}F$	DIBAH	1.3	_	1.0	2.3
6	CHF_2	DIBAH	1.3	1.0	1.2	4.5
7	$\mathrm{CF_3}$	NaBH ₄	3	4	2	1

[[]a] Determined by ¹⁹F NMR and HPLC of the crude reaction mixtures.

Configurational Assignments

The absolute configurations of β -hydroxy sulfoxides $(2R,3S,R_S)$ - and $(2S,3R,R_S)$ -**4b,d** were previously determined. [11,12p] The stereochemistry of the remaining diastereomers $(2R,3R,R_S)$ - and $(2S,3S,R_S)$ -**4b,d** was also determined by correlation with the sulfur-free benzoyl esters (R)- and (S)-**9b,d**, obtained from the known diastereomers **4b,d** above (vide infra, Scheme 7).

Determination of the stereochemistry of the fluorine-free and the difluoro diastereomers **4a**,**c** was addressed as follows. The absolute configuration of the carbinolic centre C-2 of $(2R,3S,R_S)$ -**4a** was assessed by chemical correlation: In fact this diastereomer provided (R)-sulcatol **10a** at the end of the synthetic sequence (vide infra, Scheme 5). Configurations at C-2 of $(2S,3S,R_S)$ -**4a**, and of difluoro diastereomers $(2R,3S,R_S)$ - and $(2S,3S,R_S)$ -**4c** were determined by ¹H NMR with the method of the α -phenylpropionate derivatives (Scheme 4). The above compounds were deoxygenated to the corresponding sulfides **5a**,**c** with $(CF_3CO)_2O/NaI$ (acetone, -20°C, 80-97%), ^[15] then transformed into the appropriate corresponding α -phenylpropionic esters **6a**,**c** (DCC, DMAP, CH_2CI_2) (60-80%). The assignment was

Scheme 4. Reagents and conditions: i) NaI, $(CF_3CO)_2O$, acetone, $-20^{\circ}C$; ii) (+)-(S)-2-phenylpropionic acid, DCC, DMAP, CH_2Cl_2 ; iii) (-)-(R)-2-phenylpropionic acid, DCC, DMAP, CH_2Cl_2

based on the upfield shift observed for the protons of the thio-substituted alkyl chain of compounds (2.S,3.S,2'.S)-**6a**, **c** with respect to (2.S,3.S,2'.R)-**6a** and (2.R,3.S,2'.S)-**6c**, respectively (see Experimental Section), as a consequence of the well-known shielding effect exerted by the phenyl group of the ester residue in the preferred configuration of (2.S,3.S,2'.S)-**6a**, **c**, as shown in Scheme 4. [16]

With the C-2 stereochemistry in hand, the relative configuration between C-2 and C-3, and therefore the C-3 stereochemistry of diastereomers 4a,c, were determined by comparing the ¹H-NMR data of these compounds with those of the known monofluoro derivatives **4b**. As can be seen from Table 2, all compounds $4\mathbf{a} - \mathbf{c}$ having (2S,3R) and (2R,3S) configuration, namely a syn relationship between 2-H and 3-H, exhibited smaller $J_{\rm H2-H3}$ values than those of the anti diastereomers (2S,3S) and (2R,3R). Smaller values of vicinal coupling constants were already observed in the case of many other syn-α-alkyl β-hydroxy sulfoxides in full agreement with our data. [13] [17] It has been proposed that such an effect is a consequence of hydrogen bonding between the hydroxy and the sulfinyl oxygen atoms, which stabilizes the rotamers having 2-H and 3-H gauche disposed. In agreement with this, it must be noted that a smaller $J_{\rm H2-H3}$ value for the syn diastereomers is not generally found for compounds 5-8, when esterification of the hydroxy or deoxygenation of the sulfinyl group do not allow formation of any hydrogen bonding.

In agreement with the stereochemical assignments above, it should be noted that the protons of the pentenyl chains attached to C-3 resonated at lower fields (see Experimental Section) in the case of the (3*S*)-configurated β -hydroxy sulfoxides $4\mathbf{a} - \mathbf{c}$, probably due to the field effect exerted by the *p*-Tol ring attached to the stereogenic (*R*)-sulfur atom that shields the corresponding protons of the diastereomers (3*R*)- $4\mathbf{a} - \mathbf{c}$.

Synthesis of Sulcatol

Next step toward the synthesis of sulcatol (R)-10a (Scheme 5) was the reductive removal of the p-tolylsulfinyl

Table 2. Coupling constants J_{H2-H3} [Hz] of some compounds **4–8**; n.d. = not determined

	Coupling constants J_{H2-H3} [Hz]						
Compound	$R_{\rm F}(R)$	syn- $(2S,3R)$	syn-(2R,3S)	<i>anti</i> -(2 <i>R</i> ,3 <i>R</i>)	anti-(2.S,3R)		
4a	CH ₃	1.5	3.2	8.1	6.4		
4 b	CH_2F	1.4	3.7	6.9	6.4		
4 c	CHF_2	1.5	1.9	4.2	4.4		
5c	$CHF_2^{\tilde{z}}$	4.9	4.9	3.1	3.1		
6c	CHF_2	_	5.7	_	2.9		
7a	CH_3	n.d.	3.3	4.7	3.3		
7b	CH_2F	3.6	3.8	n.d.	4.2		
7c	$CH \tilde{F}_2$	2.6	2.2	n.d.	2.6		
7d	CF_3	1.1	1.5	6.2	1.6		
8a	CH_3	4.8	4.8	3.5	3.5		
8 b	CH_2F	7.0	7.0	4.2	4.2		
8c	$CH \tilde{F}_2$	6.3	6.3	3.0	3.0		
8d	CF_3	2.7	2.7	4.8	4.8		

group from the corresponding β -hydroxy sulfoxides (2R,3R/ S_iR_S)-4a. This transformation is normally accomplished by means of Raney-Ni. However, according to the literature, this reaction can produce partial racemization at the carbinolic centre, when performed on secondary alcohols. [18] Therefore, we decided to protect the hydroxy groups before treatment with Raney-Ni. [14a] The benzoates $(2R, 3R/S, R_S)$ -7a were prepared by reaction of unresolved mixtures of diastereomeric β-hydroxy sulfoxides 4a with benzoic acid, DCC, and catalytic 4-(dimethylamino)pyridine (quantitative), and isolated in diastereomerically pure form by flash chromatography. Deoxygenation of $(2R,3S,R_S)$ -7a with NaI/TFAA^[15] provided the sulfide (2R,3S)-8a, that was reductively desulfenylated with Raney-Ni, and carefully washed with a nitrogen stream in the presence of cyclohexene, to minimize the concomitant hydrogenation of the C-C double bond.

Scheme 5. Reagents and conditions: i) PhCOOH, DCC, DMAP, CH_2Cl_2 , $0^{\circ}C$; ii) NaI, $(CF_3CO)_2O$, acetone, $-20^{\circ}C$; iii) Raney-Ni, cyclohexene, N_2 , ethanol, Δ T; iv) NaOH, H_2O /methanol, r.t.

Alkaline debenzoylation of the resulting *O*-benzoylsulcatol [(*R*)-9a] afforded enantiomerically pure sulcatol [(*R*)-10a], whose spectral data were identical to those of the natural product and whose optical rotatory power value $[\alpha]_D^{20} = -19.9$ substantially matched that of natural (*R*)-(-)-sulcatol. [19]

Synthesis of 1-Fluoro, 1,1-Difluoro, and 1,1,1-Trifluoro Analogues of Sulcatol

Both enantiomers of the mono-, di-, and trifluoro analogues of sulcatol were synthesized following an identical sequence of reactions. The preparation of the fluorinated p-tolylthio benzoates (2S,3R)-**8b**-**d** by benzoylation and subsequent deoxygenation of the corresponding β -hydroxy sulfoxides $(2S,3R,R_S)$ -**4b**-**d** is shown in Scheme 6. The same procedure was successfully applied to all the examined diastereomers (see Experimental Section and Supporting Information).

The loss of the stereogenic centre C-3 in the next step (Scheme 7) allowed us to submit the mixtures of C-3 epimers **8b-d**, which have identical stereochemistry at C-2, to desulfenylation with Raney-Ni/cyclohexene, without tedi-

Scheme 6. Reagents and conditions: i) PhCOOH, DCC, DMAP, $CH_2Cl_2,\,0\,^{\circ}C;$ ii) NaI, $(CF_3CO)_2O,$ acetone, $-20\,^{\circ}C$

ous chromatographic separations, to afford the chiral sulfur-free O-benzoyl-fluorosulcatols (R)- $\mathbf{9b}$ - \mathbf{d} . The final alkaline debenzoylation step gave the three couples of the mono-, di-, and trifluorosulcatols (R)- $\mathbf{10b}$ - \mathbf{d} as enantiomerically pure compounds.

Scheme 7. Reaction conditions: i) Raney-Ni, cyclohexene, N_2 , ethanol, ΔT ; ii) NaOH, $H_2O/methanol$, r.t.

Enantiomeric fluorosulcatols (S)-10b-d were prepared following an identical sequence of reactions, from the corresponding β -hydroxy sulfoxides 4b-d having (R) stereochemistry at the carbinolic centre C-2 (see Experimental Section and Supporting Information).

Conclusion

The pheromone (-)-(R)-sulcatol (10a) and both enantiomers of its mono-, di-, and trifluoro analogues 10b-d were stereoselectively synthesized in an enantiopure form following an operatively simple methodology. The sulfoxide group was used as chiral auxiliary, whilst introduction of fluorine was achieved by using commercially available mono-, di-, and trifluoacetic esters as cheap source of fluorine.

Experimental Section

General Details: Melting points (m.p.): uncorrected; capillary apparatus. — Polarimetric analyses: JASCO DIP-181 and PROPOL polarimeters. — Analytical TLC: routinely used to monitor reactions, plates precoated with E. Merck silica gel 60 F $_{254}$ of 0.25 mm thickness were used. — Flash chromatographies (FC): silica gel 60 (230–400 ASTM mesh). — 1H and ^{19}F NMR: Bruker AC 250L spectrometer (250 MHz, CDCl $_3$), chemical shifts in ppm (δ), tetramethylsilane (TMS) as internal standard for 1H nucleus ($\delta_H=0.00$), C_6F_6 external standard ($\delta_F=-162.90$) for ^{19}F , coupling

constants are expressed in Hz. - MS: TSQ 70 Finnigan Mat threestage quadrupole instrument, DIS (Direct Inlet System) used for pure compounds. - IR: Perkin-Elmer System 2000 FT-IR (scan range: 15600 cm⁻¹; combined scan direction). – HPLC: Waters 600E System Controller instrument using a Lambda-Max Model 481 LC spectrophotometer operating at 260 nm. — Analytical data: Waters 745 Data Module instrument; analyses were performed on Hibar Pre-Packed column RT 250-4 (LiChrosorb Si 60-µm; Merck) and optical resolution on Chiracel OB (Daicel Chemical Industries, Ltd). – GC/MS: TSQ 70 Finnigan Mat mass spectrometer having a transfer line with Varian 3400 GC instrument. - GC: DB-5 Fused Silica Capillaries column [5% phenyl, 95% methyl silicone; 30 m \times 0.25 mm; $\varnothing = 0.25$ μ m; carrier gas: He, 12 mL/min; temperature gradient operating: 40°C (1 min) → 200°C (1 min); 10°C/ $\min \rightarrow 285$ (24 min)]. THF was freshly distilled from Na/benzophenone, diisopropylamine was freshly distilled from CaH2; in all other cases, commercially available reagent-grade solvents were employed without purification. All reactions, where anhydrous organic solvents were employed, were performed under nitrogen, after flame-drying procedures of the glass apparatus. Synthesis 1-fluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-one (3b), [12p] 1,1,1-trifluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-one (**3d**), [11] and 1,1,1-trifluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-ol (4d) [11] has already been described in de-

Synthesis of $\beta\text{-Oxo}$ Sulfoxides (3R/S,Rs)-3a,c. — General Procedure: A solution of (Rs)-2-methyl-5-[(4-methylphenyl)sulfinyl]pent-2-ene (1) (5.4 mmol, 1.2 g) in THF (4 mL) was added dropwise to a solution of LDA (5.4 mmol) in THF (10 mL) at $-70\,^{\circ}\text{C}$. The temperature was allowed to reach $0\,^{\circ}\text{C}$. The yellow solution was then cooled at $-60\,^{\circ}\text{C}$ and neat ethyl difluoroacetate (2c) (5.4 mmol, 670 mg) added dropwise by syringe. After 10 min, the reaction was quenched by adding a satd. aqueous solution of NH₄Cl. The mixture was extracted with AcOEt and the extract was dried with anhydrous sodium sulfate and concentrated to dryness.

6-Methyl-3-[(4-methylphenyl)sulfinyl]-hept-5-en-2-ones [(3*R*/*S*,*R*_S)**-3a]:** Yield 1.03 g (72%), obtained as an equimolar mixture of C-3 epimers by FC (*n*-hexane/AcOEt, 7:3); $R_{\rm f}=0.35.$ – $^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.60$ and 1.67 (br. s, 6 H, 2 × 6-CH₃), 1.96 and 2.12 (s, 3 H, 1-H₃), 2.40 (br. s, 3 H, ArCH₃), 2.4–2.9 (m, 2 H, 4-H₂), 3.53 and 3.72 (dd, 1 H, J=9.1 and 6.1 Hz, J=10.0 and 4.7 Hz, 3-H), 5.00 (m, 1 H, 5-H), 7.32 and 7.50 (m, 4 H, ArH). – MS (DIS EI); m/z (%): 265 [(M + H)+] (70), 223 [C₁₂H₁₄O₂S+] (9), 195 [C₁₂H₁₄O₂S+] (18), 140 [pTolSOH+] (27), 139 [pTolSO+] (47), 125 [(M + H – pTolSOH)+] (100), 107 [C₈H₁₁+] (14), 43 [CH₃CO+] (21). – C₁₅H₂₀O₂S (264): calcd. C 68.14, H 7.62; found C 68.18, H 7.60.

1,1-Difluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]-hept-5-en-2-ones [(3*R***/***S***,** *R***_S)-3***c***]: Yield 1.4 g (87%), obtained as a 2:1 mixture of C-3 epimers by FC (***n***-hexane/AcOEt, 7:3); R_{\rm f}=0.35. ^{-1}H NMR (CDCl₃): \delta=1.56 and 1.66 (br. s, 6 H, 2 × 6-CH₃), 2.4–2.7 (m, 2 H, 4-H₂), 2.43 (br. s, 3 H, ArCH₃), 4.33 and 4.37 (m, 1 H, 3-H), 4.95 and 4.98 (m, 1 H, 5-H), 5.82 and 5.89 (t, 1 H, J=54.5 Hz, 1-H), 7.3–7.6 (m, 4 H, ArH). ^{-19}F NMR (CDCl₃): \delta=-130.60 and ^{-1}29.30, ^{-1}31.0 and ^{-1}30.30 (dd, 2 F, J=306.5 and 54.5 Hz). ^{-1}MS (DIS EI, 70 eV); m/z (%): 301 [(M + H)+] (5), 161 [(M + H - pTolSOH)+] (24), 140 [pTolSOH+] (54), 139 [pTolSO+] (100), 123 [pTolS+] (29), 91 [C_7H_7+] (44), 79 (50), 51 [CHF_2+] (44), 41 [C_3H_5+] (50).**

Synthesis of 6-Methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-ols (4a). — Method A (Table 1, Entry 1): A mixture of $(3S/R,R_S)$ -3a (1.1 mmol, 300 mg) and anhydrous ZnBr₂ (1.4 mmol, 307 mg) in

dry THF (5 mL) was stirred at r.t. for 2 h, then cooled at -65° C. A 1.0 m solution of DIBAH in n-hexane (1.4 mmol, 1.4 mL) was slowly added by syringe. After 10 min, the reaction was quenched with a satd. aqueous solution of NH₄Cl. The pH was adjusted to 2 with diluted aqueous HCl. The mixture was extracted with AcOEt and the extract was dried with anhydrous sodium sulfate and concentrated to dryness. 1 H-NMR analysis of the crude showed the following d.r.: $(2.S_3R)$ - $/(2R_3R)$ - $/(2R_3S)$ -4a = 1.0:5.5:6.8. After FC (CHCl₃/AcOEt, 75:25), the following enantiomerically pure compounds were obtained: $(2.S_3R,R_S)$ -4a (17 mg, 6%), $(2R_3R,R_S)$ -4a (102 mg, 35%) and $(2R_3S,R_S)$ -4a (126 mg, 43%). Overall isolated yield: 245 mg (84%).

Method B (Table 1, Entry 2): NaBH₄ (88 mg, 2.3 mmol), suspended in methanol/NH₄OH (9:1) (2 mL), was added to a solution of **3a** (1:1 epimeric mixture) (400 mg, 1.52 mmol) in methanol (9 mL) and 30% NH₄OH (1 mL) stirred at 0°C. After 10 min, the reaction was quenched by adding dropwise a diluted aqueous HCl solution until neutral pH was achieved. The solvent was evaporated, the residue diluted with AcOEt, washed with water (3 \times 5 mL), the combined organic layers were dried with anhydrous sodium sulfate and, after filtration, the solvent was evaporated in vacuo. ¹H-NMR analysis of the crude showed the following d.r.: (2R,3R)-/(2R,3S)-/(2S,3.S)-**4a** = 1.0:7.2:6.7. Overall isolated yield: 323 mg (80%). FC was carried out as described above (Method A).

 $\begin{array}{l} \textbf{(2.5,3R,R_s)-4a:} \ R_f = 0.40; \ [\alpha]_D{}^{20} = +\ 165.7 \ (\textit{c} = 0.5, \text{CHCl}_3); \ \textit{yellowish oil.} - {}^1H \ NMR \ (\text{CDCl}_3): \ \delta = 1.17 \ (d, \ 3\ H, \ \textit{J} = 6.6\ Hz, \ 1-H_3), \ 1.68 \ \text{and} \ 1.75 \ (\text{br. s, } 6\ H, \ 2\times 6\text{-CH}_3), \ 2.34 \ (ddd, \ 1\ H, \ \textit{J} = 9.6, \ 5.3 \ \text{and} \ 1.5 \ \text{Hz, } 3\text{-H}), \ 2.43 \ (\text{br. s, } 3\ H, \ \text{ArCH}_3), \ 2.53 \ \text{and} \ 2.70 \ (m, \ 2\ H, \ 4\text{-H}_2), \ 2.71 \ (\text{br. signal, } 1\ H, \ \text{OH}), \ 4.29 \ (dq, \ 1\ H, \ \textit{J} = 1.5 \ \text{and} \ 6.6 \ \text{Hz, } 2\text{-H}), \ 5.21 \ (m, \ 1\ H, \ 5\text{-H}), \ 7.35 \ \text{and} \ 7.50 \ (m, \ 4\ H, \ \text{ArH}). \ - \ MS \ (\text{DIS EI}); \ \textit{m/z} \ (\%): \ 267 \ [(M + H)^+] \ (11), \ 140 \ [\textit{pToISOH}^{+}] \ (50), \ 139 \ [\textit{pToISO}^+] \ (70), \ 127 \ [(M + H - \textit{pToISOH})^+] \ (20), \ 109 \ [\text{C}_8\text{H}_{13}^+] \ (100), \ 92 \ [\text{PhCH}_3^+] \ (33), \ 91 \ [\text{C}_7\text{H}_7^+] \ (50), \ 83 \ [\text{C}_6\text{H}_{11}^+] \ (45), \ 69 \ [\text{C}_5\text{H}_9^+] \ (72), \ 55 \ [\text{C}_4\text{H}_7^+] \ (16), \ 43 \ [\text{C}_3\text{H}_7^+] \ (18). \ \end{array}$

(2*R*,3*R*,*R*_S)-4a: $R_{\rm f}=0.35$; $[\alpha]_{\rm D}{}^{20}=+44.1$ (c=2.0, CHCl₃); m.p. $45-47\,^{\circ}{\rm C}$ (from diethyl ether). $-{}^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.29$ (d, 3 H, J=6.3 Hz, 1-H₃), 1.53 and 1.68 (br. s, 6 H, 2 × 6-CH₃), 2.1–2.4 (m, 2 H, 4-H₂), 2.42 (br. s, 3 H, ArCH₃), 2.85 (dt, 1 H, J=8.1 and 5.6 Hz, 3-H), 3.73 (br. signal, 1 H, OH), 4.36 (dq, 1 H, J=8.1 and 6.3 Hz, 2-H), 5.04 (m, 1 H, 5-H), 7.32 and 7.59 (m, 4 H, ArH). $-{\rm C}_{15}{\rm H}_{22}{\rm O}_2{\rm S}$ (266): calcd. C 67.63, H 8.32; found C 67.60, H 8.30.

(2*R*,3*S*,*R*₅)-4a: $R_f = 0.32$; $[\alpha]_D^{20} = +\ 108.1\ (c = 2.0,\ CHCl_3)$; m.p. $65-67^{\circ}C$ (from diethyl ether). $-\ ^1H$ NMR (CDCl_3): $\delta = 1.41$ (d, 3 H, J = 6.6 Hz, 1-H₃), 1.46 and 1.53 (br. s, 6 H, 2 × 6-CH₃), 2.0–2.4 (m, 2 H, 4-H₂), 2.40 (br. s, 3 H, ArCH₃), 2.59 (ddd, 1 H, J = 6.3, 5.8 and 3.2 Hz, 3-H), 2.78 (br. signal, 1 H, OH), 4.41 (dq, 1 H, J = 3.2 and 6.6 Hz, 2-H), 4.76 (m, 1 H, 5-H), 7.30 and 7.47 (m, 4 H, ArH).

(2.5,3.5, R_s)-4a: $R_f=0.35$; $[\alpha]_D^{\ 20}=+39.6$ (c=1.5, CHCl $_3$); m.p. $42-43\,^{\circ}$ C (from diethyl ether). $-{}^{1}$ H NMR (CDCl $_3$): $\delta=1.38$ (d, 3 H, J=6.5 Hz, 1-H $_3$), 1.50 and 1.65 (br. s, 6 H, 2× 6-CH $_3$), 2.1–2.4 (m, 2 H, 4-H $_2$), 2.43 (br. s, 3 H, ArCH $_3$), 2.77 (ddd, 1 H, J=7.6, 6.8 and 6.4 Hz, 3-H), 4.14 (dq, 1 H, J=6.4 and 6.5 Hz, 2-H), 5.01 (m, 1 H, 5-H), 7.35 and 7.49 (m, 4 H, ArH). – IR (KBr): $\tilde{v}=2930$ cm $^{-1}$ (O–H), 1690 (C=C), 1425 (δ C–H), 1292 (S=O), 1180 (C–O), 1027 (S=O), 667 (C–S).

Synthesis of 1-Fluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]-hept-5-en-2-ols (4b). — Method A (Table 1, Entry 3): A solution of $(3S/R,R_S)$ -3b (3.0 mmol, 845 mg) and anhydrous $ZnBr_2$ (15.0 mmol, 3.38 g) in dry THF (15 mL) was stirred at r.t. for 2 h. The mixture

FULL PAPER

was cooled at $-60\,^{\circ}$ C, then a 1.0 M solution of DIBAH in *n*-hexane (15.0 mmol, 15.0 mL) was slowly added by syringe. After 10 min, the reaction was quenched by adding a satd. aqueous solution of NH₄Cl. The pH was adjusted to 2 with diluted aqueous HCl. The mixture was extracted with AcOEt and the extract was dried with anhydrous sodium sulfate and concentrated to dryness. HPLC and 19 F-NMR analyses of the crude reaction mixture showed the following d.r.: (2R,3R)-/(2S,3R)-/(2R,3S)-4b = 1.0:1.1:3.2. After FC (*n*-hexane/AcOEt, 6:4), the following enantiomerically pure compounds were obtained: $(2S,3R,R_S)$ -4b (153 mg, 18%), $(2R,3S,R_S)$ -4b (460 mg, 54%), whereas $(2R,3R,R_S)$ -4b was only isolated in a mixture. Overall isolated yield: 767 mg (90%).

Method B (Table 1, Entry 4): A solution of $(3S/R,R_S)$ -**3b** (3.0 mmol, 845 mg) and anhydrous ZnBr_2 (4.4 mmol, 997 mg) in dry THF (19 mL) was stirred at r.t. for 2 h. The mixture was cooled at $-60\,^{\circ}\text{C}$, then a 1.0 M solution of DIBAH in n-hexane (3.6 mmol, 3.6 mL) was slowly added by syringe. After the usual workup, HPLC and $^{19}\text{F-NMR}$ analyses of the crude reaction mixture showed the following d.r.: (2R,3R)-/(2R,3S)-**4b** = 1.0:1.2:3.0. After FC (n-hexane/AcOEt, 6:4), the following enantiomerically pure compounds were obtained: $(2S,3R,R_S)$ -**4b** (170 mg, 20%), $(2R,3S,R_S)$ -**4b** (451 mg, 53%), whereas $(2R,3R,R_S)$ -**4b** was only isolated in mixture. Overall isolated yield: 784 mg (92%).

Method C (Table 1, Entry 5): A 1.0 M solution of DIBAH in *n*-hexane (3.5 mmol, 3.5 mL) was added by syringe to a solution of $(3S/R,R_S)$ -**3b** (3.0 mmol, 845 mg) in THF (15 mL), cooled at $-60\,^{\circ}$ C. After the usual quenching, workup and purification (see Method A), the crude mixture was submitted to HPLC and ¹⁹F-NMR analyses, which showed the following d.r.: (2S,3R)-/(2R,3S)-/(2S,3S)-**4b** = 1.0:1.3:2.3. The following enantiomerically pure compounds were isolated: $(2S,3R,R_S)$ -**4b** (170 mg, 20%), $(2R,3S,R_S)$ -**4b** (213 mg, 25%), $(2S,3S,R_S)$ -**4b** (426 mg, 50%). Overall isolated yield: 809 mg (95%).

(25,3R,R_S)-4b: $R_{\rm f}=0.35$; $[\alpha]_{\rm D}^{20}=+199.7$ (c=0.9, CHCl₃). $-^{1}$ H NMR (CDCl₃): $\delta=1.68$ and 1.75 (br. s, 6 H, 2 × 6-CH₃), 2.43 (br. s, 3 H, ArCH₃), 2.53 (dddd, J=9.0, 5.7, 1.4, and 1.1 Hz, 3-H), 2.63 and 2.74 (m, 2 H, 4-H₂), 4.00 (br. signal, 1 H, OH), 4.28 (ddd, 1 H, J=46.8, 9.0, and 6.3 Hz, 1a-H), 4.35 (ddd, 1 H, J=47.0, 9.0, and 5.6 Hz, 1b-H), 4.42 (dddd, 1 H, J=15.5, 6.3, 5.6, and 1.4 Hz, 2-H), 5.20 (m, 1 H, 5-H), 7.36 and 7.51 (m, 4 H, ArH). $-^{19}$ F NMR (CDCl₃): $\delta=-228.44$ (br. ddd, J=47.0, 46.8, and 15.5 Hz). - MS (DIS EI, 70 eV); m/z (%): 285 [(M + H)+] (100), 145 [(M + H -pTolSOH)+] (37), 140 [pTolSOH+] (43), 139 [pTolSO+] (26), 127 [C_8 H₁₂F+] (83), 107 [C_8 H₁₁+] (16), 91 [C_7 H₇+] (31), 83 [C_6 H₁₁+] (37), 69 [C_5 H₉+] (91), 55 [C_4 H₇+] (44), 41 [C_3 H₅+] (64). - HPLC analysis: $t_{\rm r}=12.07$ min (n-hexane/AcOEt, 3:2; 0.8 mL/min).

(2*R*,3*S*,*R*_s)-4b: $R_f=0.40$; $[\alpha]_D^{20}=+115.6$ (c=0.5, CHCl₃). $-^1H$ NMR (CDCl₃): $\delta=1.46$ and 1.55 (br. s, 6 H, 2 × 6-CH₃), 2.28 and 2.44 (m, 2 H, 4-H₂), 2.38 (br. s, 3 H, ArCH₃), 2.81 (dddd, 1 H, J=8.2, 5.6, 3.7, and 1.5 Hz, 3-H), 4.38 (dddd, 1 H, J=18.4, 7.1, 3.8, and 3.7 Hz, 1a-H), 4.53 (ddd, 1 H, J=47.0, 9.7, and 3.8 Hz, 1b-H), 4.65 (ddd, 1 H, J=48.0, 9.7, and 7.1 Hz, 2-H), 4.88 (m, 1 H, 5-H), 7.29 and 7.50 (m, 4 H, ArH). $-^{19}F$ NMR (CDCl₃): $\delta=-225.79$ (br. ddd, J=48.0, 47.0, and 18.4 Hz). - MS (DIS EI, 70 eV); m/z (%): 285 [(M + H)+] (100), 145 [(M + H - pTolSOH)+] (25), 140 [pTolSOH+-] (42), 139 [pTolSO+] (34), 127 [$C_8H_{12}F^+$] (73), 107 [$C_8H_{11}^+$] (17), 91 [$C_7H_7^+$] (39), 83 [$C_6H_{11}^+$] (29), 69 [$C_5H_9^+$] (89), 55 [$C_4H_7^+$] (51), 41 [$C_3H_5^+$] (87). - HPLC analysis: $t_r=15.78$ min (t_r -hexane/AcOEt, 3:2; 0.8 mL/min). - $C_{15}H_{21}FO_2S$ (284): calcd. C 63.35, H 7.44; found C 63.38, H 7.40.

(2S,3S, R_8)-4b: $R_f=0.50$; $[\alpha]_D^{20}=+119.9\ (c=0.9,\ CHCl_3).-1^H\ NMR\ (CDCl_3)$: $\delta=1.50\ and\ 1.65\ (br.\ s,\ 6\ H,\ 2\times6-CH_3),\ 1.97$ and 2.37 (m, 2 H, 4-H₂), 2.43 (br. s, 3 H, ArCH₃), 2.98 (br. dt, 1 H, J=6.4 and 7.2 Hz, 3-H), 3.70 (br. signal, 1 H, OH), 4.17 (dddd, 1 H, J=19.2, 6.4, 5.0, and 4.6 Hz, 1a-H), 4.54 (ddd, 1 H, J=46.8, 9.8, and 4.6 Hz, 1b-H), 4.63 (ddd, 1 H, J=47.3, 9.8 and 5.0 Hz, 2-H), 4.98 (m, 1 H, 5-H), 7.37 and 7.49 (m, 4 H, ArH). ^{-19}F NMR (CDCl₃): $\delta=-230.41$ (br. ddd, J=47.3, 46.8, and 19.2 Hz). $^{-}$ MS (DIS EI, 70 eV); m/z (%): 285 [(M + H)+] (100), 145 [(M + H - pTolSOH)+] (7), 140 [pTolSOH+-] (27), 139 [pTolSO+] (24), 127 [$C_8H_{12}F^+$] (47), 107 [$C_8H_{11}^+$] (12), 91 [$C_7H_7^+$] (26), 77 [Ph+] (11), 83 [$C_6H_{11}^+$] (18), 69 [$C_5H_9^+$] (47), 55 [$C_4H_7^+$] (31), 41 [$C_3H_5^+$] (54). $^{-}$ HPLC analysis: $t_r=25.83$ (p-hexane/AcOEt, 3:2; 0.8 mL/min).

(2*R*,3*R*,*R*_S)-4b: $R_{\rm f}=0.40.-{}^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.54$ and 1.68 (br. s, 6 H, 2 × 6-CH₃), 2.1–2.5 (m, 2 H, 4-H₂), 2.42 (br. s, 3 H, ArCH₃), 3.05 (br. ddd, 1 H, J=6.9, 6.7, and 5.6 Hz, 3-H), 4.2–4.8 (m, 3 H, 1-H₂ and OH), 5.04 (m, 1 H, 5-H), 7.32 and 7.59 (m, 4 H, ArH). $-{}^{19}{\rm F}$ NMR (CDCl₃): $\delta=-230.45$ (br. dt, J=24.2 and 47.8 Hz). - HPLC analysis: $t_{\rm r}=14.39$ min (*n*-hexane/AcOEt, 3:2; 0.8 mL/min).

Synthesis of 1,1-Difluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]-hept-5-en-2-ols (4c) (Table 1, Entry 6): A 1.0 $\,$ m solution of DIBAH in n-hexane (18.8 mmol, 10.8 mL) was added by syringe to a solution of difluoro ketones ($3S/R,R_S$)-3c (9.0 mmol, 2.7 g) in THF (57 mL) at $-60\,$ °C. The usual quenching, workup (see compound 4b, Method A), and FC with n-hexane/AcOEt (65:35) afforded the following diastereomerically pure compounds: ($2S,3R,R_S$)-4c (489 mg, 18%), ($2R,3S,R_S$)-4c (544 mg, 20%), ($2S,3S,R_S$)-4c (870 mg, 32%), and ($2R,3R,R_S$)-4c, which was isolated in a mixture with ($2R,3S,R_S$)-4c. Overall isolated yield: 2.6 g (95%).

(2S,3R,R_S)-4c: $R_{\rm f}=0.35; \ [\alpha]_{\rm D}^{20}=+193.4\ (c=0.8,{\rm CHCl_3}); {\rm m.p.}\ 67.8-68.5\,^{\circ}{\rm C}$ (from diisopropyl ether). $-{}^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.70$ and 1.76 (br. s, 6 H, 2× 6-CH₃), 2.45 (br. s, 3 H, ArCH₃), 2.63 (dddd, 1 H, $J=9.0, 6.0, 1.5, {\rm and}\ 1.4$ Hz, 3-H), 2.72 and 2.81 (m, 2 H, 4-H₂), 4.24 (m, 1 H, 2-H), 4.35 (br. signal, 1 H, OH), 5.22 (m, 1 H, 5-H), 5.68 (ddd, 1 H, J=56.5, 55.9 and 5.1, Hz, 1-H), 7.39 and 7.49 (m, 4 H, ArH). $-{}^{19}{\rm F}$ NMR (CDCl₃): $\delta=-130.43$ (br. ddd, 1 F, $J=291.2, 55.9, {\rm and}\ 8.9$ Hz, F-1a), -128.40 (br. ddd, 1 F, $J=291.2, 56.5, {\rm and}\ 12.0$ Hz, F-1b). $-{\rm MS}$ (DIS EI, 70 eV); m/z (%): 303 [(M + H)+] (100), 163 [(M + H $-p{\rm TolSOH})^+$], (14), 145 [C₈H₁₁F₂+] (12), 140 [$p{\rm TolSOH}^+$] (11), 139 [$p{\rm TolSO}^+$] (27), 91 [C₇H₇+] (17), 69 [C₅H₉+] (40), 51 [CHF₂+] (15), 41 [C₃H₅+] (44). $-{\rm C}_{15}{\rm H}_{20}{\rm F}_2{\rm O}_2{\rm S}$ (302): calcd. C 59.58, H 6.67; found C 59.53, H 6.62.

(2*R*,3*S*,*R*₅)-4c: $R_f=0.40$ (0.35 in CHCl₃/AcOEt, 85:15); $[\alpha]_D^{20}=+91.3$ (c=0.8, CHCl₃); m.p. $61-63\,^{\circ}$ C (from diisopropyl ether). $-^{1}$ H NMR (CDCl₃): $\delta=1.52$ and 1.61 (br. s, 6 H, 2 × 6-CH₃), 2.22 and 2.60 (m, 2 H, 4-H₂), 2.43 (br. s, 3 H, ArCH₃), 2.77 (d, 1 H, J=3.8 Hz, OH), 2.89 (m, 1 H, 3-H), 4.48 (ddddd, 1 H, J=12.6, 7.8, 5.7, 3.8, and 1.9 Hz, 2-H), 4.91 (m, 1 H, 5-H), 5.81 (ddd, 1 H, J=56.7, 55.5, and 5.7 Hz, 1-H), 7.33 and 7.48 (m, 4 H, ArH). $-^{19}$ F NMR (CDCl₃): $\delta=-129.02$ (br. ddd, 1 F, J=289.8, 55.5, and 7.8 Hz, F-1a), -127.42 (br. ddd, 1 F, J=289.8, 56.7, and 12.6 Hz, F-1b). - IR (nujol): $\tilde{v}=3250$ cm⁻¹ (O-H), 1063 (C-O), 1020 (S=O), 1007 (C-S), 812 (C-F). - MS (DIS EI, 70 eV); m/z (%): 303 [(M + H)+] (100), 163 [(M + H - pTolSOH)+] (18), 145 [C₈H₁₁F₂+] (21), 140 [pTolSOH+] (21), 139 [pTolSO+] (10), 91 [C_7 H₇+] (7), 69 [C_5 H₉+] (14); 51 [CHF₂+] (3).

(2.5,3.5,R_S)-4c: $R_{\rm f}=0.43$; $[\alpha]_{\rm D}^{20}=+160.8$ (c=0.6, CHCl₃); m.p. 77–78°C (from diisopropyl ether). $-{}^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.51$ and 1.66 (br. s, 6 H, 2 × 6-CH₃), 1.94 and 2.58 (m, 2 H, 4-H₂),

2.44 (br. s, 3 H, ArCH₃), 2.87 (br. ddd, 1 H, J = 9.1, 5.8, and 4.4 Hz, 3-H), 4.10 (ddddd, 1 H, J = 12.0, 11.0, 6.0, 4.5, and 4.4 Hz, 2-H), 4.52 (d, 1 H, J = 6.0 Hz, OH), 4.94 (m, 1 H, 5-H), 6.06 (dt, 1 H, J = 4.5 and 55.5 Hz, 1-H), 7.37 and 7.47 (m, 4 H, ArH). – 19 F NMR (CDCl₃): $\delta = -130.10$ (br. ddd, 1 F, J = 288.5, 55.5, and 11.0 Hz, F-1a), -127.80 (br. ddd, 1 F, J = 288.5, 55.5, and 12.0 Hz, F-1b).

(2R,3R,R_S)-4c: $R_{\rm f}=0.40$ (n-hexane/AcOEt, 65:35). - ¹H NMR (CDCl₃): $\delta=1.55$ and 1.69 (br. s, 6 H, 2 × 6-CH₃), 2.3–2.7 (m, 2 H, 4-H₂), 2.43 (br. s, 3 H, ArCH₃), 3.03 (br. ddd, J=8.0, 6.0 and, 4.2 Hz, 3-H), 4.20 (dddd, 1 H, J=14.2, 7.7, 5.2, and 4.2 Hz, 2-H), 4.99 (m, 1 H, 5-H), 6.13 (ddd, 1 H, J=57.2, 55.2, and 5.2 Hz, 1-H), 7.33 and 7.60 (m, 4 H, ArH). - ¹⁹F NMR (CDCl₃): $\delta=-130.31$ (br. ddd, 1 F, J=291.0, 55.2, and 7.7 Hz, F-1a), -126.28 (br. ddd, 1 F, J=291.0, 57.2, and 14.2 Hz, F-1b). - MS (DIS EI, 70 eV); m/z (%): 303 [(M + H)+] (100), 163 [(M + H - pTolSOH)+] (1), 145 [C₈H₁₁F₂+] (5), 140 [pTolSOH+] (5), 139 [pTolSO+] (1), 91 [C₇H₇+] (1), 83 [C₆H₁₁+] (13), 69 [C₅H₉+] (40), 55 [C₄H₇+] (6).

Deoxygenation Reaction. — **General Procedure:** A solution of trifluoroacetic anhydride (3.0 mmol) in acetone (2 mL) was added dropwise to a suspension of difluoro sulfinyl alcohol 4c (1.0 mmol, 302 mg) and NaI (2.0 mmol) in acetone (10 mL) stirred at $-40\,^{\circ}$ C under nitrogen. After 10 min, an aqueous satd. solution of sodium sulfite and NaHCO₃ was added. The mixture was extracted with diethyl ether and the extract was dried with anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo. FC (eluent mixtures indicated in the Supporting Information) allowed the isolation of the pure diastereomers 5c. Physical and spectroscopic data for (2S,3S)-5a, (2R,3S)-5c, (2S,3S)-5c are reported in the Supporting Information.

Esterification of 4a-d with Benzoic Acid and 5a,c with Enantiopure Phenylpropionic Acid. — **General Procedure:** Neat benzoic acid (134 mg, 1.1 mmol) was added to a solution of sulfinyl alcohol **4** (1.0 mmol) and dicyclohexylcarbodiimide (DCC) (224 mg, 1.1 mmol) in CH₂Cl₂ (40 mL) stirred at 0°C After 5 min, dimethylaminopyridine (DMAP) (12 mg, 0.1 mmol) was added and a white suspension formed. The reaction was stirred at r.t. for the appropriate time (see below and Supporting Information), then the white precipitate was filtered off, and the solution concentrated in vacuo. FC (see below and Supporting Information) of the crude reaction mixtures allowed the isolation of the pure products **7**.

Physical and spectroscopic data for $(2.S,3S,R_S)$ -7a, $(2R,3R,R_S)$ -7a, $(2S,3S,R_S)$ -7b, $(2R,3S,R_S)$ -7b, $(2R,3S,R_S)$ -7b, $(2R,3S,R_S)$ -7c, $(2R,3S,R_S)$ -7d, $(2R,3S,R_S)$ -7d, $(2R,3S,R_S)$ -7d are reported in the Supporting Information.

6-Methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-yl Benzoate (7a): Reaction carried out on mixtures of diastereomers **4a** obtained from **3a** by both Method A and B. Purification by FC (*n*-hexane/AcOEt, 75:25), quantitative overall yields.

(2*R*,3*S*,*R*_s)-7a: $R_f = 0.30$; $[\alpha]_D^{20} = -30.5$ (c = 1.0, CHCl₃); yellowish oil. - ¹H NMR (CDCl₃): $\delta = 1.56$ and 1.65 (br. s, 6 H, 2 × 6-CH₃), 1.57 (d, 3 H, J = 6.7 Hz, 1-H₃), 2.27 (br. s, 3 H, ArCH₃), 2.39 and 2.50 (m, 2 H, 4-H₂), 2.90 (ddd, 1 H, J = 8.6, 5.6, and 3.3 Hz, 3-H), 5.08 (m, 1 H, 5-H), 5.51 (dq, 1 H, J = 3.3 and 6.7 Hz, 2-H), 7.2–8.0 (9 H, m, ArH).

1-Fluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-yl Benzoate [(2*S***,3***R***,***R***_S)-7b**]: Yield 55% from (2*S*,3*R*,*R*_S)-4**b**, after overnight stirring and FC (*n*-hexane/AcOEt, 7:3); $R_{\rm f} = 0.35$; $[a]_{\rm D}^{20} = +126.4$ (c = 1.2, CHCl₃). $- {}^{1}{\rm H}$ NMR (CDCl₃): $\delta = 1.59$ and 1.69 (br. s, 6 H, 2 × 6-CH₃), 2.33 (br. s, 3 H, ArCH₃), 2.57 and 2.63 (m, 2 H,

4-H₂), 3.13 (ddt, 1 H, J = 3.9, 1.2, and 6.7 Hz, 3-H), 4.63 (ddd, 1 H, J = 47.4, 10.1, and 4.3 Hz, 1a-H), 4.66 (ddd, 1 H, J = 47.5, 10.1, and 5.5 Hz, 1b-H), 5.18 (m, 1 H, 5-H), 5.76 (dddd, 1 H, J = 20.0, 5.5, 4.3, and 3.6 Hz, 2-H), 7.2-8.0 (9 H, m, ArH). - ¹⁹F NMR (CDCl₃): δ = -226.86 (dddd, J = 47.5, 47.4, 20.0, and 1.2 Hz). - MS (DIS EI, 70 eV); m/z (%): 389 [(M + H)⁺] (88), 249 [(M + H - pTolSOH)⁺] (100), 140 [pTolSOH⁺·] (10), 139 [pTolSO⁺] (18), 127 [C₈H₁₂F⁺] (54), 105 [PhCO⁺] (84), 91 [C₇H₇+] (13), 77 [Ph⁺] (27).

1,1-Difluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-yl **Benzoate** [(2S,3R, R_S)-7c]: Yield 58% from (2S,3R, R_S)-4c, after overnight stirring and FC (n-hexane/AcOEt, 8:2); $R_f = 0.33$; $[\alpha]_{\rm D}^{20} = +88.5 \ (c = 1.0, \text{ CHCl}_3). - {}^{1}\text{H NMR (CDCl}_3): \delta = 1.60$ and 1.70 (br. s, 6 H, 2 \times 6-CH₃), 2.40 (br. s, 3 H, ArCH₃), 2.64 and 2.69 (m, 2 H, 4-H₂), 3.07 (br. dt, 1 H, J = 2.6 and 7.0 Hz, 3-H), 5.19 (m, 1 H, 5-H), 5.77 (dddd, 1 H, J = 13.5, 11.3, 3.8, and 2.6 Hz, 2-H), 5.97 (dt, 1 H, J = 3.8 and 55.5 Hz, 1-H), 7.3-8.1 (m, 9 H, ArH). - ^{19}F NMR (CDCl $_{3}$): δ = -129.88 (br. ddd, 1 F, J = 288.0, 55.5, and 13.5 Hz, F-1a, -128.02 (br. ddd, 1 F, <math>J =288.0, 55.5, and 11.3 Hz, F-1b). – IR (nujol): $\tilde{v} = 1733 \text{ cm}^{-1}$ (C= O), 1257 (O=S), 1095 (C-O), 811 (C-F), 710 (C-S). - MS (DIS EI, 70 eV); m/z (%): 407 [(M + H)⁺] (15), 267 [(M + H pTolSOH) $^{+}$] (100), 247 [(M + H - pTolSOH - HF) $^{+}$] (11), 145 $[C_8H_{11}F_2^+]$ (42), 140 [pTolSOH⁺⁻] (10), 139 [pTolSO⁺] (2), 105 $[PhCO^{+}]$ (40), 77 $[Ph^{+}]$ (5), 51 $[CHF_{2}^{+}]$ (1), 41 $[C_{3}H_{5}^{+}]$ (1). -C₂₂H₂₄F₂O₃S (406): calcd. C 65.01, H 5.95; found C 65.03, H 5.92.

1,1,1-Trifluoro-6-methyl-3-[(4-methylphenyl)sulfinyl]hept-5-en-2-yl Benzoate [(2*S***,3***R***,***R_S***)-7d]: Yield 58% from (2***S***,3***R***,***R_S***)-4d, after 3.5 h and FC (***n***-hexane/AcOEt 85:15); R_{\rm f}=0.33; [\alpha]_{\rm D}{}^{20}=+162.9 (c=0.5, CHCl₃). -^{1}H NMR (CDCl₃): \delta=1.65 and 1.72 (br. s, 6 H, 2 × 6-CH₃), 2.44 (br. s, 3 H, ArCH₃), 2.77 and 2.83 (m, 2 H, 4-H₂), 2.91 (br. ddd, 1 H, J=8.4, 4.8, and 1.1 Hz, 3-H), 5.23 (m, 1 H, 5-H), 6.01 (dq, J=1.1 and 7.6 Hz, 2-H), 7.3–8.2 (m, 9 H, ArH). -^{19}F NMR (CDCl₃): \delta=-76.38 (br. d, J=7.6 Hz). -MS (DIS EI, 70 eV); m/z (%): 425 [(M + H]⁺] (18), 285 [(M + H - pTolSOH)⁺] (100), 163 [C₈H₁₀F₃⁺] (56), 140 [pTolSOH⁺] (28), 139 [pTolSO⁺] (14), 123 [pTolS⁺] (18), 105 [pHcO⁺] (66), 91 [C_7H₇⁺] (5), 77 [pH⁺] (17). -C_{22}H₂₃F₃O₃S (424): calcd. C 62.25, H 5.46; found C 62.23, H 5.50.**

(2*S*,3*S*,2′.*S*)-6a: 80% from (2*S*,3*S*)-5a and (*S*)-PPA, after FC (*n*-hexane/AcOEt, 90:10); $R_{\rm f}=0.35.-{}^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.34$ (d, 3 H, J=6.2 Hz, 1-H₃), 1.38 and 1.63 (br. s, 6 H, 2× 6-CH₃), 1.49 (d, 3 H, J=7.3 Hz, 3′-H₃), 2.04 and 2.10 (m, 2 H, 4-H₂), 2.31 (br s, 3 H, ArCH₃), 3.01 (ddd, 1 H, J=8.4, 6.0, and 3.4 Hz, 3-H), 3.69 (br. q, 1 H, J=7.3 Hz, 2′-H), 5.01 (m, 1 H, 5-H), 5.04 (dq, 1 H, J=3.4 and 6.2 Hz, 2-H), 7.0–7.4 (m, 9 H, ArH). – MS (DIS EI, 70 eV); m/z (%): 382 [M⁺⁻] (100), 313 [C₁₉H₂₁SO₂⁺] (15), 259 [C₁₇H₂₃O₂⁺] (11), 233 [C₁₅H₂₁S⁺] (58), 232 [C₁₅H₂₀S⁺⁻] (40), 109 [C₈H₁₃⁺] (59), 105 [PhC₂H₄⁺] (63).

(2*S*,3*S*,2′*R*)-6a: 70% from (2*S*,3*S*)-5a and (*R*)-PPA, after FC (*n*-hexane/AcOEt, 90:10); $R_{\rm f}=0.35.-^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.24$ (d, 3 H, J=6.2 Hz, 1-H₃), 1.49 (d, 3 H, J=7.3 Hz, 3′-H₃), 1.52 and 1.69 (br s, 6 H, 2× 6-CH₃), 2.15 and 2.34 (m, 2 H, 4-H₂), 2.32 (br. s, 3 H, ArCH₃), 3.10 (ddd, 1 H, J=8.2, 6.0, and 3.9 Hz, 3-H), 3.65 (br. q, 1 H, J=7.3 Hz, 2′-H), 5.04 (dq, 1 H, J=3.9 and 6.2 Hz, 2-H), 5.18 (m, 1 H, 5-H), 7.0–7.4 (m, 9 H, ArH). – MS (DIS EI, 70 eV); m/z (%): 383 [(M + H)+] (25), 382 [M+-] (100), 313 [C₁₉H₂₁SO₂+] (18), 259 [C₁₇H₂₃O₂+] (13), 233 [C₁₅H₂₁S+] (59), 232 [C₁₅H₂₀S+-] (43), 109 [C₈H₁₃+] (44), 105 [PhC₂H₄+] (72).

(2*R*,3*S*,2′*S*)-6c: 60% from (2*R*,3*S*)-5c and (*S*)-PPA after FC (*n*-pentane/diethyl ether, 100:1); $R_{\rm f}=0.35.-{}^{\rm 1}{\rm H}$ NMR (CDCl₃): $\delta=1.53$ (d, 3 H, J=7.3 Hz, 3′-H₃), 1.54 and 1.72 (br. s, 6 H, 2×6-

FULL PAPER

CH₃), 2.16 and 2.37 (m, 2 H, 4-H₂), 2.33 (br. s, 3 H, ArCH₃), 3.23 (br. ddd, 1 H, J = 8.6, 5.7, and 5.4 Hz, 3-H), 3.73 (br. q, 1 H, J = 7.3 Hz, 2'-H), 5.19 (dddd, 1 H, J = 15.1, 7.2, 5.7, and 3.9 Hz, 2-H), 5.23 (m, 1 H, 5-H), 5.98 (ddd, 1 H, J = 55.5, 54.5, and 3.9 Hz, 1-H), 7.1-7.4 (m, 9 H, ArH). – ¹⁹F NMR (CDCl₃): δ = -131.09 (br. ddd, 1 F, J = 292.0, 54.5, and 15.1 Hz, F-1a), -128.98 (br. ddd, 1 F, J = 292.0, 55.5, and 7.2 Hz, F-1b). – MS (DIS EI, 70 eV); m/z (%) 418 [M⁺⁻] (100), 349 [C₁₉H₁₉SO₂F₂⁺] (8), 329 [C₁₉H₁₈SO₂F⁺] (84), 268 [C₁₅H₁₈SF₂⁺⁻] (8), 123 [pTolS⁺] (3), 105 [PhC₂H₄⁺] (40), 69 [C₅H₉⁺] (14).

(2*S*,3*S*,2′*S*)-6c: 66% from (2*S*,3*S*)-5c and (*S*)-Phenylpropionic acid, after FC (*n*-pentane/diethyl ether, 100:1); $R_{\rm f}=0.35.$ – $^1{\rm H}$ NMR (CDCl₃): $\delta=1.31$ and 1.62 (br. s, 6 H, 2 × 6-CH₃), 1.55 (d, 3 H, J=7.2 Hz, 3′-H₃), 1.99 and 2.05 (m, 2 H, 4-H₂), 2.32 (br. s, 3 H, ArCH₃), 3.09 (dtt, 1 H, J=1.1, 7.6 and 2.9 Hz, 3-H), 3.79 (br. q, 1 H, J=7.2 Hz, 2′-H), 4.96 (m, 1 H, 5-H), 5.26 (dddd, 1 H, J=12.8, 5.8, 5.6, and 2.9 Hz, 2-H), 6.16 (ddd, 1 H, J=57.0, 54.9, and 5.6 Hz, 1-H), 7.1-7.4 (m, 9 H, ArH). – $^{19}{\rm F}$ NMR (CDCl₃): $\delta=-131.23$ (br. ddd, 1 F, J=293.5, 54.9, and 12.8 Hz, F-1a), –128.40 (br. ddd, 1 F, J=293.5, 57.0, and 5.8 Hz, F-1b). – MS (DIS EI, 70 eV); m/z (%): 418 [M $^{++}$] (85), 349 [C₁₉H₁₉SO₂F₂+] (11), 329 [C₁₉H₁₈SO₂F⁺] (100), 268 [C₁₅H₁₈SF₂+·] (5), 105 [PhC₂H₄+] (33), 69 [C₅H₉+] (8).

Deoxygenation of Benzoic Esters 7a-d. – General Procedure: Sulfenyl benzoic esters **8a-d** were prepared according to the same general procedure described for the preparation of the sulfenyl alcohols **5c** from **4c**.

Physical and spectroscopic data for (2R,3S)-**8b**, (2S,3S)-**8b**, (2R,3R)-**8b**, (2R,3S)-**8c**, (2S,3S)-**8c**, (2S,3S)-**8d**, (2R,3S)-**8d**, (2R,3S)-**8d** are reported in the Supporting Information.

6-Methyl-3-[(4-methylphenyl)sulfenyl]hept-5-en-2-yl Benzoate [(2*R***,3***S***)-8a]: Yield 87% from (2R,3S,R_S)-7a after FC (***n***-hexane/diethyl ether, 9:1); R_{\rm f}=0.35; [\alpha]_{\rm D}{}^{20}=-75.5 (c=1.6, CHCl₃). -^{1}{\rm H} NMR (CDCl₃): \delta=1.45 (d, 3 H, J=6.4 Hz, 1-H₃), 1.61 and 1.72 (br. s, 6 H, 2 × 6-CH₃), 2.26 (br. s, 3 H, ArCH₃), 2.34 and 2.44 (m, 2 H, 4-H₂), 3.37 (ddd, 1 H, J=8.0, 6.2, and 4.8 Hz, 3-H), 5.29 (dq, 1 H, J=4.8 and 6.4 Hz, 2-H), 5.32 (m, 1 H, 5-H), 7.02 and 7.33 (m, 4 H, p{\rm TolH}), 7.3–7.9 (m, 5 H, PhH). — MS (DIS EI); m/z (%): 354 [M⁺] (6), 285 [C₁₇H₁₇O₂S⁺] (1), 232 [(M — PhCOOH)⁺⁻] (20), 230 [(M — p{\rm TolSH})⁺⁻] (4), 123 [p{\rm TolS}) (10), 109 [C₈H₁₃⁺] (85), 105 [PhCO⁺] (100), 91 [C₇H₇⁺] (10), 77 [C₆H₅⁺] (27). — C₂₂H₂₆O₂S (354): calcd. C 74.54, H 7.39; found C 74.58, H 7.40.**

1-Fluoro-6-methyl-3-[(4-methylphenyl)sulfenyl]hept-5-en-2-yl Benzoate [(2S,3R)-8b]: Yield 83% from (2S,3R,R_S)-7b after FC (n-hexane/ diethyl ether, 9:1); $R_{\rm f}=0.35; [\alpha]_{\rm D}{}^{20}=+42.6 \ (c=1.5,\ {\rm CHCl_3}).$ ¹H NMR (CDCl₃): $\delta = 1.56$ and 1.71 (br. s, 6 H, 2 × 6-CH₃), 2.28 (br. s, 3 H, ArCH₃), 2.36 and 2.50 (m, 2 H, 4-H₂), 3.49 (ddd, 1 H, J = 8.0, 7.0, and 5.4 Hz, 3-H), 4.75 (ddd, 1 H, <math>J = 47.5, 10.4, and3.1 Hz, 1a-H), 4.90 (ddd, 1 H, J = 47.0, 10.4, and 5.0 Hz, 1b-H), 5.32 (m, 1 H, 5-H), 5.38 (dddd, 1 H, J = 21.6, 7.0, 5.0, and 3.1, 2-H), 7.07 and 7.35 (m, 4 H, pTolH), 7.41, 7.55, and 7.96 (m, 5 H, PhH). $- {}^{19}$ F NMR (CDCl₃): $\delta = -232.91$ (br. ddd, J = 47.5, 47.0, and 21.6 Hz). – MS (DIS EI, 70 eV); m/z (%): 372 [M⁺·] (18), 303 $[C_{17}H_{16}SO_2F^+]$ (1), 283 $[C_{17}H_{15}SO_2^+]$ (22), 250 $[(M - C_{17}H_{16}SO_2F^+]]$ $PhCOOH)^{+}$ (18), 248 [(M - $pTolSH)^{+}$] (3), 228 [(M - $pTolSH)^{+}$] - HF) $^{+}$] (6), 161 [C₁₀H₉S $^{+}$] (7), 127 [C₈H₁₂F $^{+}$] (34), 105 [PhCO $^{+}$] (100), 77 [Ph⁺] (26). - C₂₂H₂₅FO₂S (372): calcd. C 70.94, H 6.76; found C 70.90, H 6.77.

1,1-Difluoro-6-methyl-3-[(4-methylphenyl)sulfenyl]hept-5-en-2-yl Benzoate [(2S,3R)-8c]: Yield 83% from (2S,3R,R_S)-7c after FC (n-

hexane/ethyl ether, 98:2); $R_{\rm f}=0.36$; $[\alpha]_{\rm D}^{20}=+54.2$ (c=1.5, CHCl $_3$). $^{-1}{\rm H}$ NMR (CDCl $_3$): $\delta=1.58$ and 1.72 (br. s, 6 H, 2 × 6-CH $_3$), 2.31 (br. s, 3 H, ArCH $_3$), 2.36 and 2.55 (m, 2 H, 4-H $_2$), 3.42 (br. ddd, 1 H, J=8.4, 6.3, and 5.4 Hz, 3-H), 5.32 (m, 1 H, 5-H), 5.46 (dddd, 1 H, J=15.6, 7.2, 6.3, and 3.6 Hz, 2-H), 6.27 (dt, 1 H, J=3.6 and 54.7 Hz, 1-H), 7.10 and 7.36 (m, 4 H, pTolH), 7.43, 7.60, and 8.00 (m, 5 H, PhH). $^{-19}{\rm F}$ NMR (CDCl $_3$): $\delta=-131.59$ (br. ddd, 1 F, J=289.9, 54.7, and 15.6 Hz, F-1a), $^{-129.08}$ (br. ddd, 1 F, J=289.9, 54.7, and 7.2 Hz, F-1b). $^{-}{\rm MS}$ (DIS EI, 70 eV); m/z (%): 390 [M $^{++}$] (100), 321 [C $_{17}{\rm H}_{15}{\rm SO}_2{\rm F}_2^+$] (7), 301 [C $_{17}{\rm H}_{14}{\rm SO}_2{\rm F}^+$] (25), 281 [C $_{17}{\rm H}_{13}{\rm SO}_2^+$] (6), 268 [(M $^{-}{\rm PhCOOH})^{+-}$] (6), 266 [(M $^{-}{\it p}$ TolSH) $^{+}$] (1), 246 [(M $^{-}{\it p}$ TolSH $^{-}{\rm HF})^{+}$] (4), 145 [C $_{8}{\rm H}_{11}{\rm F}_2^{+}$] (7), 105 [PhCO $^{+}$] (18). $^{-}{\rm C}_{22}{\rm H}_{24}{\rm F}_2{\rm O}_2{\rm S}$ (390): calcd. C 67.67, H 6.19; found C 62.90, H 7.06.

1,1,1-Trifluoro-6-methyl-3-[(4-methylphenyl)sulfenyl]hept-5-en-2-yl Benzoate [(**2***S*3*R*)-**8d**]: Yield 79% from (2*S*3*R*, R_S)-**7d**, after FC (*n*-hexane/diethyl ether, 9:1); $R_f = 0.34$; $[\alpha]_D^{20} = +94.6$ (c = 1.1, CHCl₃). $-^1$ H NMR (CDCl₃): $\delta = 1.65$ and 1.77 (br. s, 6 H, 2 × 6-CH₃), 2.31 (br. s, 3 H, ArCH₃), 2.37 and 2.76 (m, 2 H, 4-H₂), 3.43 (br. ddd, 1 H, J = 10.2, 3.7, and 2.7 Hz, 3-H), 5.40 (m, 1 H, 5-H), 5.69 (dq, 1 H, J = 2.7 and 7.5 Hz, 2-H), 7.13 and 7.37 (m, 4 H, pTolH), 7.49, 7.62, and 8.08 (m, 5 H, PhH). $-^{19}$ F NMR (CDCl₃): $\delta = -74.06$ (br. d, J = 7.5 Hz). - MS (DIS EI, 70 eV); m/z (%): 408 [M+-] (27), 339 [C₁₇H₁₄SO₂F₂+] (5), 319 [C₁₇H₁₃SO₂-F₂+] (6), 286 [(M - PhCOOH)+-] (5), 284 [(M - pTolSH)+-] (1), 264 [(M - pTolSH - HF)+] (2), 163 [C₈H₁₀F₃+] (17), 123 [pTolS+] (16), 105 [PhCO+] (100), 77 [Ph+] (31), 41 [C₃H₅+] (15). - C₂₂H₂₃F₃O₂S (408): calcd. C 64.69, H 5.67; found C 64.70, H 5.66.

Reductive Desulfenylation Reaction. — Synthesis of Benzoates 9a-d. — General Procedure: Through a solution of sulfenyl benzoates 8a-d (1.0 mmol) in ethanol (10 mL) was bubbled for 30 min a strong nitrogen flow, then cyclohexene (0.5 mL) and Raney-Ni [three-fold weight, washed with ethanol (3 \times) and submitted to a nitrogen flow for 1 h] were added. The black slurry was stirred at reflux for 1 h under nitrogen, then the Raney-Ni was carefully filtered off and the ethanolic solution was concentrated under vac-

6-Methylhept-5-en-2-yl Benzoate [(*R*)-9a]: Yield 80% from (2*R*,3*S*)-8a after FC (*n*-hexane/diethyl ether 98:2); $R_{\rm f}=0.35$; $[\alpha]_{\rm D}{}^{20}=-46.5$ (*c* 0.8, CHCl₃); $[\alpha]_{365}{}^{20}=-150.2$ (*c* = 0.8, CHCl₃). $-{}^{1}{\rm H}$ NMR (CDCl₃): $\delta=1.34$ (d, 3 H, J=6.2 Hz, 1-H₃), 1.57 and 1.67 (br. s, 6 H, 2 × 6-CH₃), 1.64 and 1.78 (m, 2 H, 3-H₂), 2.09 (m, 2 H, 4-H₂), 5.13 (m, 1 H, 5-H), 5.15 (m, 1 H, 2-H), 7.4-8.1 (m, 5 H, ArH). - MS (GC EI); m/z (%): 233 [(M + H)⁺] (0.1), 110 [C₈H₁₃⁺⁻] (84), 105 [PhCO⁺] (38), 95 [C₇H₁₁⁺] (100), 77 [C₆H₅⁺] (20), 69 [C₅H₉⁺] (7), 55 [C₄H₇⁺] (4). - GC/MS; t_r m/z (%): 17.13 min, 232 (99.9) [M⁺]. - C₁₅H₂₀O₂ (232): calcd. C 77.55, H 8.68; found C 77.58, H 8.70.

1-Fluoro-6-methyl-hept-5-en-2-yl Benzoate [(*R***)-9b]: Yield 80% from (2.***S***,3.***R***)-8b and/or (2.***S***,3.***S***)-8b after FC (***n***-hexane/diisopropyl ether, 100:5); R_{\rm f}=0.35; [\alpha]_{\rm D}^{20}=+47.0 (c=1.4, CHCl₃); [\alpha]_{365}^{20}=+172.0 (c=1.4, CHCl₃). ^{-1}H NMR (CDCl₃): δ = 1.62 and 1.72 (br. s, 6 H, 2 × 6-CH₃), 1.83 and 1.93 (m, 2 H, 3-H₂), 2.18 (m, 2 H, 4-H₂), 4.61 (ddd, 1 H, J=47.6, 10.3 and 4.6 Hz, 1a-H), 4.65 (ddd, 1 H, J=48.0, 10.3 and 3.2 Hz, 1b-H), 5.17 (m, 1 H, 5-H), 5.35 (ddddd, 1 H, J=22.5, 8.1, 5.7, 4.6, and 3.2 Hz, 2-H), 7.4–8.2 (m, 5 H, ArH). ^{-19}F NMR (CDCl₃): δ = ^{-232.02} (br. ddd, J=48.0, 47.6, and 22.5 Hz). ^{-19}F NMR (DIS EI, 70 eV); m/z (%): 250 [M+] (3), 128 [(M ^{-1}PhCOOH)+] (100), 113 [C₇H₁₀F+] (17), 105 [PhCO+] (76), 95 [C₇H₁₁+] (69), 77 [Ph+] (67), 55 [C₄H₇+] (13), 41 [C₃H₅+] (72). ^{-1}GC/MS; t_{\rm b} m/z (%): 17.46 min, 250 (98.0) [M+]. ^{-1}HPLC analysis: t_{\rm b} = 3.72 min (n-hexane/AcOEt, 4:1, 1.0 mL/**

min); $t_{\rm r}=20.04$ min (Chiracel OB, n-hexane/2-propanol, 98:2, 0.3 mL/min). — ${\rm C_{15}H_{19}FO_2}$ (520): calcd. C 71.97, H 7.65; found C 71.94, H 7.62.

(.5)-9b: 80% from (2R,3R/S)-8**b** after FC (n-hexane/diisopropyl ether, 100:5); $R_{\rm f}=0.35$; $[a]_{\rm D}{}^{20}=-48.2$ (c=1.2, CHCl₃). $-{}^{1}$ H-and 19 F-NMR spectra (CDCl₃) were overimposable to those of (R)-9b. - GC/MS; $t_{\rm r}$ m/z (%): 17.46 min, 250 (97.4) [M⁺]. - HPLC analysis: $t_{\rm r}=3.72$ min (n-hexane/AcOEt, 4:1, 1.0 mL/min); $t_{\rm r}=19.11$ min (Chiracel OB, n-hexane/2-propanol, 98:2, 0.3 mL/min).

1,1-Difluoro-6-methylhept-5-en-2-yl Benzoate [(*R***)-9c]:** Yield 70% from (2S,3R)-8c and/or (2S,3S)-8c after FC (n-hexane/diisopropyl ether, 100:5); $R_f = 0.35$; $[\alpha]_D^{20} = +43.9$ (c = 1.0, CHCl₃). $- {}^{1}H$ NMR (CDCl₃): $\delta = 1.54$ and 1.65 (br. s, 6 H, 2 × 6-CH₃), 1.85 and 1.90 (2 H, m, 3-H₂), 2.11 and 2.17 (2 H, m, 4-H₂), 5.10 (m, 1 H, 5-H), 5.29 (m, 1 H, 2-H), 5.89 (ddd, 1 H, J = 56.0, 54.9, and 3.2 Hz, 1-H), 7.4-8.1 (m, 5 H, ArH). - ¹⁹F NMR (CDCl₃): $\delta =$ -132.32 (br. ddd, 1 F, J = 291.0, 56.0, and 13.2 Hz, F-1a), -128.60(br. ddd, 1 F, J = 291.0, 54.9, and 9.4 Hz, F-1b). – MS (DIS EI, 70 eV); m/z (%): 268 [M⁺⁻] (24), 248 [(M - HF)⁺⁻] (6), 146 [(M - $PhCOOH)^{+}$ (100), 131 $[C_7H_9F^+]$ (3), 126 [(M - PhCOOH - PHF)⁺·] (4), 105 [PhCO⁺] (41), 95 [C₇H₁₁⁺] (62), 77 [Ph⁺] (11), 68 $[C_5H_8^+]$ (8), 51 $[CHF_2^+]$ (1). -GC/MS; t_p m/z (%): 16.53 min, 268 (95.0) [M⁺]. - HPLC analysis: $t_r = 4.07 \text{ min } (n\text{-hexane/AcOEt},$ 9:1, 1.0 mL/min); $t_r = 29.29$ min (Chiracel OB, *n*-hexane/2-propanol, 100.0:0.5, 0.3 mL/min). $-C_{15}H_{18}F_2O_2$ (268): calcd. C 67.15, H 6.76; found C 67.14, H 6.72.

(5)-9c: 85% from (2*R*,3*S*)-**8c** after FC (*n*-hexane/diisopropyl ether, 100:5); $R_{\rm f}=0.35$; $[a]_{\rm D}^{20}=-45.8$ (c=1.2, CHCl₃). - ¹H- and ¹⁹F-NMR data (CDCl₃) were identical to those of the already described (*R*)-**9c** enantiomer. - GC/MS; $t_{\rm r}$ m/z (%): 16.53 min, 268 (98.7) [M⁺]. - HPLC analysis: $t_{\rm r}=4.07$ min (*n*-hexane/AcOEt, 9:1, 1.0 mL/min); $t_{\rm r}=24.52$ min (Chiracel OB, *n*-hexane/2-propanol, 100.0:0.5, 0.3 mL/min).

1,1,1-Trifluoro-6-methylhept-5-en-2-yl Benzoate [(R)-9d]: Yield 60% from (2S,3R)-8d and/or (2S,3S)-8d after FC (*n*-hexane/diisopropyl ether, 100:3); $R_{\rm f} = 0.35$; $[\alpha]_{\rm D}^{20} = +64.9$ (c = 1.1, CHCl₃); $[\alpha]_{365}^{20} =$ +253.0 (c = 1.1, CHCl₃). $- {}^{1}$ H NMR (CDCl₃): $\delta = 1.53$ and 1.64 (br. s, 6 H, 2×6 -CH₃), 1.7–2.2 (m, 4 H, 3- and 4-H₂), 5.08 (m, 1 H, 5-H), 5.55 (m, 1 H, 2-H), 7.4 and 8.2 (m, 5 H, ArH). - 19F NMR (CDCl₃): $\delta = -78.22$ (d, J = 7.2 Hz). – IR (nujol): $\tilde{v} =$ $1746~cm^{-1}~(C\!=\!O),~1380~(CH),~1452~(CH),~1280~(C\!=\!S),~1182$ [(CH₃)₂C], 1107 (C-O), 810 (C-F), 709 (C-S). - MS (DIS EI, 70 eV); m/z (%): 286 [M⁺⁻] (26), 266 [(M - HF)⁺⁻] (6), 258 (10), 243 (7), 164 [(M - PhCOOH)⁺·] (100), 149 [C₇H₈F₃⁺] (26), 122 [PhCOOH⁺] (5), 105 [PhCO⁺] (38), 95 [C₇H₁₁⁺] (12), 77 [Ph⁺] (26), 55 $[C_4H_7^+]$ (8), 43 $[C_3H_7^+]$ (21), 41 $[C_3H_5^+]$ (30). – GC/MS; t_p m/z (%): 15.22 min, 286 (98.0) [M⁺]. – HPLC analysis: $t_r = 5.13$ min (n-hexane/AcOEt, 98:2, 1.0 mL/min); $t_r = 17.09$ min (Chiracel OB, *n*-hexane/2-propanol, 100.0:0.5, 0.3 mL/min). $-C_{15}H_{17}F_3O_2$ (286): calcd. C 62.93, H 5.84; found C 62.94, H 5.82.

(*S*)-9d: 75% from (2R,3R/S)-8d, after FC (n-hexane/diisopropyl ether, 100:3); $R_{\rm f}=0.35$; [a] $_{\rm D}^{20}=-66.3$ (c=0.9, CHCl $_3$). $^{-1}$ H-and 19 F-NMR data (CDCl $_3$) were identical to those of (R)-9d. $^{-1}$ GC/MS; $t_{\rm r}$ m/z (%): 15.22 min, 286 (95.0) [M $^{+1}$]. $^{-1}$ HPLC analysis: $t_{\rm r}=5.13$ min (n-hexane/AcOEt, 98:2, 1.0 mL/min); $t_{\rm r}=14.56$ min (Chiracel OB, n-hexane/2-propanol, 100.0:0.5, 0.3 mL/min).

Benzoate Hydrolysis Reactions.— Synthesis of 10a—d. — General Procedure: A solution of NaOH (1.0 mmol) in water (2 mL) was added to a solution of benzoates 4a and 9b—d (1.0 mmol) in methanol (10 mL) stirred at r.t., and stirring was continued for half an hour. Then the reaction mixture was diluted with water (20 mL),

brine was added, the mixture was extracted with diethyl ether (3 \times 10 mL), dried with anhydrous sodium sulfate, filtered, and the solvent was evaporated in vacuo.

6-Methylhept-6-en-2-ol [(*R*)**-sulcatol, (***R*)**-(**-)**-10a]:** Yield 70% from (*R*)**-9a** after FC (*n*-pentane/diethyl ether 7:3); $R_{\rm f}=0.35$; yellowish oil; $[\alpha]_{\rm D}^{20}=-19.9$ (c=1.2, EtOH) $^{[19]}$; $[\alpha]_{365}^{20}=-33.8$ (c=1.2, EtOH). $^{-1}$ H NMR (CDCl₃): $\delta=1.22$ (d, 3 H, J=6.1 Hz, 1-H₃), 1.3-1.6 (m, 2 H, 3-H₂), 1.62 (br. signal, 1 H, OH), 1.65 and 1.72 (br. s, 6 H, 2×6 -CH₃), 2.10 (m, 2 H, 4-H₂), 3.83 (tq, 1 H, J=6.6 and 6.1 Hz, 2-H), 5.16 (m, 1 H, 5-H). $^{-}$ MS (GC EI); m/z (%): 128 [M $^{+-}$] (20), 110 [C₈H₁₃ $^{+-}$] (27), 95 [C₇H₁₁ $^{+-}$] (100), 69 [C₅H₉ $^{+-}$] (40), 55 [C₄H₇ $^{+-}$] (20). $^{-}$ GC/MS; $t_{\rm r}$ m/z (%): 7.32 min, 128 (94.1) [M $^{+-}$]; 14.47 min, 220 (3.7) [(2 M $^{-}$ 2 H₂O) $^{+}$].

1-Fluoro-6-methylhept-5-en-2-ol [(*R*)-**10b**]: Yield 67% from (*R*)-**9b** after FC (petroleum ether/diethyl ether, 85:15); $R_{\rm f}=0.35$; $[a]_{\rm D}{}^{20}=+26.3$ (c=0.7, EtOH); $[a]_{365}{}^{20}=+81.0$ (c=0.7, EtOH). $^{-1}{\rm H}$ NMR (CDCl₃): $\delta=1.48$ and 1.53 (m, 2 H, 3-H₂), 1.63 and 1.70 (br. s, 6 H, 2 × 6-CH₃), 2.01 (d, 1 H, J=4.6 Hz, OH), 2.11 and 2.17 (m, 2 H, 4-H₂), 3.89 (m, 1 H, 2-H), 4.28 (ddd, 1 H, J=48.2, 9.4, and 6.8 Hz, 1a-H), 4.42 (ddd, 1 H, J=47.2, 9.4, and 3.0 Hz, 1b-H), 5.11 (m, 1 H, 5-H). $^{-19}{\rm F}$ NMR (CDCl₃): $\delta=-229.34$ (br. ddd, J=48.2, 47.2, and 18.3 Hz). $^{-19}{\rm F}$ NMS (GC EI, 70 eV); m/z (%): 146 [M⁺⁻] (7), 128 [(M $^{-1}{\rm H}_2{\rm O})^{+-}$] (12), 113 [C₇H₁₀F⁺] (16), 95 [C₇H₁₁⁺] (100), 69 [C₅H₉⁺] (61), 55 [C₄H₇⁺] (37), 41 [C₃H₅⁺] (70). $^{-1}{\rm GC/MS}$; $t_{\rm b}$ m/z (%): 7.58 min, 146 (84.6) [M⁺, (*R*)-10b]; 7.14 min, 142 (1.8) [decane⁺]; 8.55 min, 156 (4.8) [undecane⁺], 10.31 min, 170 (4.8) [dodecane⁺]; 12.02 min, 184 (4.0) [tridecane⁺]. $^{-1}{\rm C}_8{\rm H}_{15}{\rm FO}$ (146): calcd. C 65.72, H 10.34; found C 65.74, H 10.32.

(.5)-10b: Yield 82% from (*S*)-**9b** after FC (*n*-pentane/diethyl ether, 85:15); $R_{\rm f}=0.35$; $[\alpha]_{\rm D}^{20}=-30.2$ (c=0.8, EtOH). - ¹H- and ¹⁹F-NMR spectra (CDCl₃) were identical to those already described for (*R*)-**10b**. - MS (GC EI, 70 eV); m/z. 146 [M⁺⁻] (2), 128 [(M - H₂O)⁺⁻] (5), 113 [C₇H₁₀F⁺] (8), 95 [C₇H₁₁⁺] (55), 69 [C₅H₉⁺] (44), 55 [C₄H₇⁺] (41), 41 [C₃H₅⁺] (100). - GC/MS; $t_{\rm p}$ m/z (%): 7.58 min, 146 (94.1) [M⁺, (*S*)-**10b**].

1,1-Difluoro-6-methylhept-5-en-2-ol [(*R*)-**10c**]: Yield 62% from (*R*)-**9c** after FC (petroleum ether/diethyl ether, 9:1); $R_{\rm f}=0.35$; $[\alpha]_{\rm D}{}^{20}=+20.8$ (c=0.8, EtOH). $-{}^{\rm 1}{\rm H}$ NMR (CDCl $_{\rm 3}$): $\delta=1.30$ and 1.60 (m, 2 H, 3-H $_{\rm 2}$), 1.65 and 1.73 (br. s, 6 H, 2 × 6-CH $_{\rm 3}$), 1.92 (d, 1 H, J=5.1 Hz, OH), 2.18 and 2.23 (2 H, m, 4-H $_{\rm 2}$), 3.77 (m, 1 H, 2-H), 5.14 (m, 1 H, 5-H), 5.64 (dt, 1 H, J=4.8 and 56.4 Hz, 1-H). $-{}^{\rm 19}{\rm F}$ NMR (CDCl $_{\rm 3}$): $\delta=-130.96$ (br. dd, J=56.4 and 11.0 Hz). $-{\rm MS}$ (GC EI, 70 eV); m/z (%) 164 [M $^{+}$] (53), 146 [(M $^{-}{\rm H}_{\rm 2}{\rm O})^{+}$] (12), 131 [C $_{\rm 7}{\rm H}_{11}{\rm F}_{\rm 2}^{+}$] (14), 113 [C $_{\rm 7}{\rm H}_{10}{\rm F}^{+}$] (3), 95 [C $_{\rm 7}{\rm H}_{11}^{+}$] (82), 69 [C $_{\rm 5}{\rm H}_{\rm 9}^{+}$] (97), 55 [C $_{\rm 4}{\rm H}_{\rm 7}^{+}$] (58), 43 [C $_{\rm 3}{\rm H}_{\rm 7}^{+}$] (17), 41 [C $_{\rm 3}{\rm H}_{\rm 5}^{+}$] (100). $-{\rm GC/MS}$; $t_{\rm r}$ m/z (%): 7.30 min, 164 (82.6) [M $^{+}$, (R)-10c]; 7.14 min, 142 (1.9) [decane $^{+}$]; 8.55 min, 156 (6.4) [undecane $^{+}$], 10.31 min, 170 (5.5) [dodecane $^{+}$]; 12.02 min, 184 (3.4) [tridecane $^{+}$]. $-{\rm C}_{\rm 8}{\rm H}_{14}{\rm F}_{\rm 2}{\rm O}$ (164): calcd. C 58.52, H 8.59; found C 58.54, H 8.62.

(*S*)-10c: 82% from (*S*)-9c after FC (*n*-pentane/diethyl ether, 95:5); $R_{\rm f} = 0.35$; $[\alpha]_{\rm D}^{20} = -17.6$ (c = 0.3, EtOH). - ¹H- and ¹⁹F-NMR spectra (CDCl₃) were identical to those already described for (*R*)-10c. - MS (GC EI); m/z. 164 [M⁺⁻] (10), 146 [(M - H₂O)⁺⁻] (3), 131 [C₇H₁₁F₂⁺] (3), 113 [C₇H₁₀F⁺] (1), 95 [C₇H₁₁⁺] (35), 69 [C₅H₉⁺] (57), 55 [C₄H₇⁺] (45), 41 [C₃H₅⁺] (100). - GC/MS; $t_{\rm p}$ m/z (%): 7.30 min, 164 (73.6) [M⁺, (*S*)-10c], 7.14 min, 142, (0.5) [decane⁺]; 8.55 min, 156 (16.5) [undecane⁺]; 10.31 min, 170 (6.6) [dodecane⁺]; 12.02 min, 184 (2.7) [tridecane⁺].

1,1,1-Trifluoro-6-methylhept-5-en-2-ol [(*R***)-10d]:** Yield 52% from (*R*)-**9d** after FC (*n*-pentane/diethyl ether, 95:5); $R_{\rm f} = 0.35$; $[\alpha]_{\rm D}^{20} =$

+29.8 (c = 0.9, EtOH). - ¹H NMR (CDCl₃): $\delta = 1.60$ and 1.70 (m, 2 H, 3-H₂), 1.64 and 1.71 (br. s, 6 H, 2×6 -CH₃), 2.17 and 2.23 (m, 2 H, 4-H₂), 3.85 (m, 1 H, 2-H), 5.11 (m, 1 H, 5-H). - ¹⁹F NMR (CDCl₃): $\delta = -81.19$ (br. d, J = 7.0 Hz). – MS (GC EI, 70 eV); m/z (%): 182 [M⁺⁺] (12), 164 [(M - H₂O⁺⁺)] (1), 149 $[C_7H_8F_3^{+}]$ (4), 129 $[C_7H_7F_2^{+}]$ (1), 95 $[C_7H_{11}^{+}]$ (7), 69 $[C_5H_9^{+}]$ (57), 55 $[C_4H_7^+]$ (41), 41 $[C_3H_5^+]$ (100). – GC/MS; t_p m/z (%): 6.33 min, 182 (69.0) [M⁺, (R)-**10d**]; 7.14 min, 142 (2.3) [decane⁺]; 8.55 min, 156 (8.7) [undecane⁺], 10.31 min, 170 (9.9) [dodecane⁺]; 12.02 min, 184 (10.1) [tridecane⁺]. - C₈H₁₃F₃O (182): calcd. C 52.74, H 7.19; found C 52.74, H 7.22.

(S)-10d: 70% from (S)-9d, after FC (n-pentane/diethyl ether, 95:5); $R_{\rm f} = 0.35$; $[\alpha]_{\rm D}^{20} = -15.7$ (c = 0.3, EtOH). $- {}^{1}{\rm H}$ - and ${}^{19}{\rm F}$ -NMR spectra (CDCl₃) were identical to those already described for (R)-**10d.** – MS (GC EI); m/z (%): 182 [M⁺⁻] (59), 164 [(M – H₂O)⁺⁻] (4), $149 \left[C_7 H_8 F_3^+ \right]$ (14), $129 \left[C_7 H_7 F_2^+ \right]$ (5), $95 \left[C_7 H_{11}^+ \right]$ (15), 69 $[C_5H_9^+]$ (100), 55 $[C_4H_7^+]$ (46), 41 $[C_3H_5^+]$ (71). – GC/MS; t_p m/ z (%): 6.33 min, 182 (38.8) [M⁺, (R)-**10d**]; 7.14 min, 142 (8.7) [decane⁺]; 8.55 min, 156 (23.1) [undecane⁺], 10.31 min, 170 (17.9) [dodecane⁺]; 12.02 min, 184 (11.4) [tridecane⁺].

Acknowledgments

C.N.R. "Progetto Finalizzato per i Beni Culturali" is gratefully acknowledged for financial support. Ing. Simona Boffi and Ing. Emanuele Peveri are gratefully acknowledged for experimental work

[1] Preliminary results of this work were part of "Sintesi di Sulcatolo e suoi Analoghi Fluorurati Enantiomericamente Puri". Simona Boffi and Emanuele Peveri: Tesi di Laurea in Ingegneria Chimica; Politecnico di Milano; Dipartimento di Chimica;

Anno Accademico **1996–1997**.

^[2a] Fluorine in Biomedicinal Chemistry (Eds.: R. Filler, S. Kobayashi), Academic Press, Chicago, **1981**. – ^[2b] J. T. Welch, S. Eswarakrishnan, *Fluorine in Bioorganic Chemistry*, Wiley, New York, **1991**. – ^[2c] R. Filler, Y. Kobayashi, L. M. Yagupolskii, York, 1991. — [24] K. Filler, Y. Kobayashi, L. M. Yagupoiskii, Biomedical Aspects of Fluorine Chemistry, Elsevier, Amsterdam, 1993. — [24] Fluorine-Containing Amino Acids: Synthesis and Properties (Eds.: V. P. Kukhar, V. A. Soloshonok), Wiley, Chichester, 1994. — [26] G. Resnati, Tetrahedron 1993, 49, 9385—9445. — [27] Fluoroorganic Chemistry: Synthetic Challenges and Biomedical Rewards (Eds.: G. Resnati, V. A. Soloshonok), Tetrahedron Symposium-in-Print No. 58; Tetrahedron 1996, 52, 1—330. — [28] M. Schlosser, Angew. Chem. Int. Ed. Engl. 1998, 110, 1496—1513.

1-330. — [2g] M. Schlosser, Angew. Chem. Int. Ed. Engl. 1998, 110, 1496—1513.

[3] [3a] D. Cartwright, "Recent Developments in Fluorine-Containing Agrochemicals", in Organofluorine Chemistry: Principles and Commercial Applications (Eds.: R. E. Banks, J. C. Tatlow, B. E. Smart), Plenum Press, New York, 1994, pp. 237—262. — [3b] C. Djerassi, "Insect Control: Operational and Policy Aspects", in From the Lab into the World, Am. Chem. Soc., Washington D. C., 1994, pp. 149—161. — [3c] F. Camps, A. Messeguer, F.-J. Sanchez, Tetrahedron 1988, 44, 5161—5167, and references therein. — [3d] J. E. Oliver, R. M. Waters, W. R. Lusby, Synthesis 1994, 273—275. — [3e] I. Villuendas, A. Parrilla, A. Guerrero, Tetrahedron 1994, 50, 12673—12684. — [3f] Z. Wang, X. Lu, Tetrahedron 1995, 51, 11765—11774. — [3g] A. P. Khrimian, J. E. Oliver, R. M. Waters, S. Panicker, J. M. Nicholson, J. A. Klun, Tetrahedron: Asymmetry 1996, 7, 37—40. Klun, *Tetrahedron: Asymmetry* **1996**, *7*, 37–40.

[4a] M. S. Blum, "Insect Pheromones", in *Pesticide Chemistry in*

the 20th Century (Ed.: J. R. Plimmer), Am. Chem. Soc., Washinghton D. C., **1977**, pp. 209–236. – [4b] J. H. Borden, "Behavioral Responses of Coleoptera to Pheromones, Allomones and Kairomones", in Chemical Control of Insect Behaviour. Theory and Application (Eds.: H. H. Schorey, J. J. McKelvey), Wiley, New York, **1977**, pp. 169–198. – ^[4c] J. H. Borden, "Aggregation Pheromones", in *Comprehensive Insect Physiology, Biochemistry and Pharmacology* (Eds.: G. A. Kerkut, L. I. Gilbert), Pergamon, Oxford, **1985**, vol. 9, pp. 257–285. [5] [5a] S. Cade, B. F. Hrutfiord, R. I. Gara, J. Econ. Entomol. 1970, 63, 1014–1015. — [5b] K. J. Byrne, A. A. Swigar, R. M. Silverstein, J. H. Borden, E. Stokkink, J. Insect. Physiol. 1974, 202 1007. 20, 1895-1990.

^[6a] J. H. Borden, L. Chong, J. A. McLean, K. N. Slessor, K. Mori, *Science* **1976**, *192*, 894–896. – ^[6b] K. Mori, *J. Chem. Soc., Chem. Commun.* **1997**, 1153–1158. – ^[6c] E. L. Plummer, T. E. Stewart, K. Byrne, G. T. Pearce, R. M. Silverstein, *J. Chem. Ecol.* **1976**, *2*, 307–331.

[7] [7a] J. H. Borden, J. R. Handley, J. A. McLean, R. M. Silverstein, L. Chong, K. N. Slessor, B. D. Johnston, H. R. Schuler, *J. Chem. Ecol.* **1980**, *6*, 445–456. - ^[7b] K. Mori, *Tetrahedron* **1981**, *37*, 1341–1342, and references therein.

For some recent syntheses of sulcatol see: [8a] S. G. Davies, G. D. Smyth, *J. Chem. Soc., Perkin Trans. 1* **1996**, 2467–2477 and references therein. – [8b] S. G. Davies, G. D. Smyth, *Tetrahedron: Asymmetry* **1996**, *7*, 1005–1006.

- [9a] P. Bravo, M. Zanda, "Asymmetric Synthesis of Fluoro Organic Compounds via Chiral Sulfoxide Chemistry", in *Enanti*ganic Compounds via Chiral Sulfoxide Chemistry", in *Enantiocontrolled Synthesis of Fluoro Organic Compounds: Stereochemical Challenges and Biomedical Targets* (Ed.: V. A. Soloshonok), Wiley, Chichester, scheduled to appear in **1998**. – [9b] P. Bravo, G. Resnati, "Exploitation of Chiral Sulfoxides in Asymmetric Synthesis", in *Perspectives in the Organic Chemistry of Sulfur* (Eds.: B. Zwanenburg, A. J. H. Klunder), Elsevier, Amsterdam, **1987**, vol. 28, pp. 89–103. – [9c] A. J. Walker, *Tetrahedron: Asymmetry* **1992**, *3*, 961–998. – [9d] J. P. Marino, *Pure Appl. Chem.* **1993**, *65*, 667–674. – [9e] M. C. Carreño, *Chem. Rev.* **1995**, 95, 1717–1760. – [9f] G. Solladié, *Methods Org. Synth.* (Houben-Weyl) **1995**, vol. E21, pp. 1056–1076. – [9g] G. Solladié, *Methods Org. Synth.* (Houben-Weyl) **1995**, vol. E21, pp. 1793–1818.
- [10] P. Bravo, E. Piovosi, G. Resnati, Gazz. Chim. Ital. 1988, 118, 115 - 122
- [11] A. Arnone, P. Bravo, M. Frigerio, G. Resnati, F. Viani, J. Chem. Res. (M) 1989, 2201-2231
- Reduction of β -oxo sulfoxides to β -hydroxy sulfoxides: [12a] R. Annunziata, M. Cinquini, F. Cozzi, *J. Chem. Soc., Perkin Trans.* 1 1979, 1687–1690. – [12b] H. Kosugi, H. Konta, H. Uda, *J. Chem. Soc., Chem. Commun.* 1985, 211–213. – [12c] A. Arnone, P. Brayo, G. Pospati, F. Vicni, Tetrahadran 1987, 46 Chem. Soc., Chem. Commun. 1985, 211–213. — [12c] A. Arnone, P. Bravo, G. Resnati, F. Viani, Tetrahedron 1987, 43, 4635–4647. — [12d] C. Iwata, Y. Moritani, K. Sugiyama, H. Izaki, H. Kuroki, T. Imanishi, Chem. Pharm. Bull. 1988, 36, 4785–4793. — [12e] M. C. Carreño, J. L. García Ruano, A. M. Martín, C. Pedregal, J. H. Rodríguez, A. Rubio, J. Sánchez, G. Solladié, J.Org. Chem. 1990, 55, 2120–2128. — [12f] B. Peiseler, M. Rohmer, J.Chem.Soc., Perkin Trans. 1 1991, 2449–2453. — [12g] G. Solladié, N. Ghiatou, Tetrahedron Lett. 1992, 33, 1605–1608. — [12h] G. Solladié, O. Lohse, J. Org. Chem. 1993, 58, 4555–4563. — [12i] J. L. García Ruano, Phosphorous Sulfur Silicon 1993, 74, 233–247. — [12i] G. Solladié, A. Almario, Tetrahedron Lett. 1994, 35, 1937–1940. — [12k] H. Kosugi, O. Kanno, H. Uda, Tetrahedron: Asymmetry 1994, 5, 1139–1142. Kanno, H. Uda, *Tetrahedron: Asymmetry* **1994**, *5*, 1139 – 1142. – [121] J. L. García Ruano, A. Fuerte, M. C. Maestro, *Tetrahedron: Asymmetry* **1994**, *5*, 1443 – 1446. – [12m] A. Solladié-Cavallo, J. Suffert, A. Adib, G. Solladié, *Tetrahedron Lett.* **1990**, *31*, 6649–6652. – [12n] J. L. García Ruano, M. C. Maestro, F. Sánchez-Sancho, *Tetrahedron: Asymmetry* **1995**, *6*, 2299–2312.

 — [12p] P. Bravo, E. Piovosi, G. Resnati, *J. Chem. Soc., Perkin Trans.* 1 **1989**, 1201–1208.

 — [12q] P. Bravo, M. Frigerio, G. Resnati, *Synthesis* **1988**, 955–960.

 — [12q] J. L. García Ruano, A. M. Gonzáles-Vadillo, M. C. Maestro, Tetrahedron: Asymmetry **1997**, 8, 3283-3292.
- D. Barros, M. C. Carreño, J. L. García Ruano, M. C. Maestro, Tetrahedron Lett. 1992, 33, 2733-2736
- [14] [14a] G. Solladié, C. Greck, G. Demailly, A. Solladié-Cavallo, Tetrahedron Lett. 1982, 23, 5047-5050. [14b] G. Solladié, C. Greck, G. Demailly, Tetrahedron Lett. 1985, 26, 435-438.
- [15] J. Drabowicz, S. Oae, *Synthesis* **1977**, 404–405.
- J. Dradowicz, S. Ode, Synthesis 1977, 404-403.
 G. Helmchen, Tetrahedron Lett. 1974, 1527-1530. [16b]
 G. Helmchen, R. Schmierer, Angew. Chem. Int. Ed. Engl. 1976, 15, 703-704. [16c]
 B. M. Trost, J. L. Belletire, S. Godleski, P. G. McDougal, J. M. Balkovec, J. L. Baldwin, M. E. Christy, G. S. Ponticello, S. L. Varga, J. P. Springer, J. Org. Chem. 1986, 51, 2370-2374. [16d]
 P. Bravo, F. Ganazzoli, G. Resnati, S. De Muneri, A. Albineti, L. Chem. Proc. (S.) 1099, 216, 217. Munari, A. Albinati, J. Chem. Res. (S) 1988, 216-217.
- [17] [17a] F. Alcudia, E. Brunet, J. L. García Ruano, J. H. Rodríguez, F. Sánchez, J. Chem. Res. (M) 1982, 2826-2850; (S) 1982,

284–285. – $^{[17b]}$ F. Alcudia, E. Brunet, J. L. García Ruano, M. 2. Brunet, J. L. Garcia Ivanio, Ivi. A. Hoyos, P. Prados, J. H. Rodríguez, *Org. Magn. Reson.* **1983**, *21*, 643–648. – [^{17c]} F. Alcudia, E. Brunet, J. L. García Ruano, M. C. Martinez, J. H. Rodríguez, *Tetrahedron* **1984**, *40*, 2023–2034. – [^{17d]} J. C. Carretero, J. L. García Ruano, M. C. Martinez, J. H. Rodríguez, F. Alcudia, *Tetrahedron* **1985**, *41*, 2410–2422.

2419–2433. [18] K. Nishide, Y. Shigeta, K. Obata, T. Inoue, M. Node, *Tetrahedron Lett.* **1996**, *6*, 2271–2274, and references therein. [19] [19a] $[\alpha]_D^{23} = -16.3$ (c = 1.26, EtOH) in ref. [8b]. – [19b] $[\alpha]_D^{24.5} = -16.0$ (c = 1.1, EtOH) in: K. Mori, P. Puapoomchar-

eon, *Liebigs Ann. Chem.* **1987**, 271–272; T. Sugai, O. Katoh, H. Ohta, *Tetrahedron* **1995**, *51*, 11987–11998. – [19c] For (*S*)-(+)-sulcatol, $[\alpha]_{\rm D}^{22}=+12.6$ (c=1.042. EtOH) in: K. Mori, *Tetrahedron* **1981**, *37*, 1341–1342. – [19d] $[\alpha]_{\rm D}^{23}=+14.4$ (c=0.998, EtOH) in: K. Mori, *Tetrahedron* **1975**, *31*, 3011–3012. – [19e] $[\alpha]_{\rm D}^{23}=+14.8$ (c=4.96, EtOH) in: B. D. Johnson, K. N. Slessor, *Can. J. Chem.* **1979**, *57*, 233–235. – [19f] $[\alpha]_{\rm D}^{23}=+14.57$ (c=0.03, EtOH) in: S. Liang, L. A. Paquette, *Tetrahedron: Asymmetry* **1990**, *1*, 445–452.

Received August 6, 1998 [O98375]